
MARCH/APRIL 2023

Special Issue on Testability and
Dependability of Artificial Intelligence Hardware

• Testability and Dependability of AI Hardware: Survey, Trends, Challenges, and Perspectives
• Shaping Resilient AI Hardware Through DNN Computational Feature Exploitation • Fault-Tolerant Neural Network Accelerators With Selective TMR

• API-Based Hardware Fault Simulation for DNN Accelerators • On the Impact of Uncertainties in Silicon-Photonic Neural Networks
• Analysis and Mitigation of DRAM Faults in Sparse-DNN Accelerators • On the Mitigation of Read Disturbances in Neuromorphic Inference Hardware

General Interest
• Using STLs for Effective In-Field Test of GPUs • T-Topology Coupler-Based Bandpass Negative Group Delay Active Circuit Design and Test

• FPGA-Chain: Enabling Holistic Protection of FPGA Supply Chain With Blockchain Technology

Associate Editor-in-Chief
Mehdi Tahoori
KIT, Germany

mehdi.tahoori@kit.edu

Editor-in-Chief
Partha Pratim Pande

Washington State University, USA
pande@eecs.wsu.edu

The Last Byte
Scott Davidson

Oracle, USA
scott.davidson@oracle.com

The Road Ahead
 Mike Kishinevsky

Intel, USA
michael.kishinevsky@intel.com

Tutorials
Swarup Bhunia

University of Florida, USA
swarup@ece.u�.edu

Interviews
Nicola Nicolici

McMaster University, Canada
nicola@ece.mcmaster.ca

Reports
 Naghmeh Karimi

University of Maryland, USA
Naghmeh.karimi@umbc.edu

Publicity
Ganapati Bhat

Washington State University, USA
ganapati.bhat@wsu.edu

Reviews
Scott Davidson

Oracle, USA
scott.davidson@oracle.com

Roundtables
Ramesh Karri

NYU, USA
rkarri@nyu.edu

Perspectives
Mehdi Tahoori
KIT, Germany

mehdi.tahoori@kit.edu

Newsletters
CEDA Currents:

Agnieszka Dubaj
Intel, USA

a.dubaj@ieee-ceda.com

Latin America Liaison
LIASONS

DEPARTMENTS

TECHNICAL AREAS

STEERING COMMITTEE

IEEE Publishing Operations

KEYNOTES
Mehdi Tahoori
 KIT, Germany

mehdi.tahoori@kit.edu

Self-Aware and Adaptive Systems
Axel Jantsch

Vienna University of Technology, Austria
axel.jantsch@tuwien.ac.at

Laura Pozzi
University of Lugano, Switzerland

laura.pozzi@usi.ch

Test and Verification Techniques
Vivek Chickermane

Cadence, USA
vivekc@cadence.com

 Rubin A Parekhji
Texas Instruments, India

parekhji@ti.com
Fei Su

Intel, USA
fei.su@intel.com

Things and Systems of Systems
Mohammad Al Faruque

University of California Irvine, USA
alfaruqu@uci.edu

Paul Bogdan
University of Southern California, USA

pbogdan@usc.edu

SoC and 3D
 Lorena Anghel

University Grenoble-Alpes, France
Lorena.anghel@grenoble-inp.fr

Jin-Fu Li
National Central University, Taiwan

j�i@ee.ncu.edu.tw

Low Power Systems
Somnath Paul

Intel, USA
somnath.paul@intel.com

Memories
Said Hamdioui

Delft University of Technology, The Netherlands
S.Hamdioui@tudelft.nl

 Abu Sebastian
IBM Research—Zurich, Switzerland

ASE@zurich.ibm.com

DATC Newsletter:
Joe Domore

IBM (retired), USA
joepdamore@aol.com

Massimo Poncino
Politecnico di Torino, Italy

massimo.poncino@polito.it

Analog, Asynchronous and
Mixed Signal

Haralampos Stratigopoulos
CNRS Sorbonne, France

haralampos.stratigopoulos@lip6.fr

Shreyas Sen
Purdue University, USA
shreyas@purdue.edu

Emerging Technologies and Devices
Yiran Chen

Duke University, USA
yiran.chen@duke.edu

TTTC Newsletter:
Stefano Di Carlo

Politecnico di Torino, Italy
stefano.dicarlo@polito.it

Ricardo Reis
Universidade Federal do Rio Grande do Sul, Brazil

reis@inf.ufrgs.br

Luis Miguel Silveira (Chair)
INESC-ID, IST, Universidade de Lisboa, Portugal

lms@ieee.org
Krishnendu Chakrabarty (Past EiC)

Duke University, USA
krish@ee.duke.edu

445 Hoes Lane, Piscataway, NJ 08854 USA
Dawn Melley
Senior Director, Publishing Operations
d.melley@ieee.org

Patrick Kempf
Senior Manager, Journals Production
p.j.kempf@ieee.org

Joanna Gojlik
Journals Production Manager
j.gojlik@ieee.org

Theresa L. Smith
Production Coordinator
tlsmith@ieee.org

Felicia Spagnoli
Advertising Production Manager
f.spagnoli@ieee.org

Kevin Lisankie
Director, Editorial Services
k.lisankie@ieee.org

Peter M. Tuohy
Director, Production Services
p.tuohy@ieee.org

Jeffrey E. Cichocki
Associate Director, Editorial Services
j.cichocki@ieee.org

Neelam Khinvasara
Associate Director,
Information Conversion and
Editorial Support
n.khinvasara@ieee.org

Bruce Hecth
VG2PLAY, USA

bruce.hecht@ieee.org
Enrico Macii

Politecnico di Torino, Italy
enrico.macii@polito.it

Yervant Zorian
Synopsys, USA

yervant.zorian@synopsys.com

Submission Information: Submit a Word, pdf, text, or PostScript version of your submission
to ScholarOne Manuscripts, h�ps://mc.manuscriptcentral.com/dandt

Editorial: Unless otherwise stated, bylined articles and columns, as well as product and service
descriptions, reflect the author’s or firm’s opinion. Inclusion in IEEE Design&Test does not
necessarily constitute endorsement by IEEE. All submissions are subject to editing for style,

clarity, and length.

IEEE Design&Test (ISSN 2168-2364) is published bimonthly by the Institute of
Electrical and Electronic Engineering, Inc. Responsibility for the contents rests upon
the authors and not upon the IEEE, the Society/Council, or its members. IEEE
Corporate Office: 3 Park Avenue, 17th Floor, New York, NY 10016. IEEE Operations
Center: 445 Hoes Lane, Piscataway, NJ 08854. NJ Telephone: + 1 732 981 0060.
Price/Publication Information: To order individual copies for members and
nonmembers, please email the IEEE Contact Center at contactcenter@ieee.org. (Note:
Postage and handling charge not included.) Member and nonmember subscription
prices available upon request. Copyright and Reprint Permissions: Abstracting is
permi�ed with credit to the source. libraries are permi�ed to photocopy for private
use of patrons, provided the per-copy fee of $31.00 is paid through the Copyright
Oearance Center, 222 Rosewood Drive, Danvers, MA 01923. For all other copying,
reprint, or republication permission, write to Copyrights and Permissions
Department, IEEE Publications Administration, 445 Hoes Lane, Piscataway, NJ
08854. Copyright©2023 by The Institute of Electrical and Electronics Engineers, Inc.
All rights reserved. Periodicals Postage Paid at New York, NY and at additional
mailing offices. Postmaster: Send address changes to IEEE Design&Test, IEEE, 445
Hoes Lane, Piscataway, NJ 08854-4141. GST Registration No. 125634188. CPC Sales
Agreement #40013087. Return undeliverable Canada addresses to: Pitney Bowes
IMEX, P.O. Box 4332, Stanton Rd., Toronto, ON M5W 3J4, Canada. IEEE prohibits
discrimination, harassment, and bullying. For more information visit
h�p://www.ieee.org/nondiscrimination. Printed in U.S.A.

Deep-Submicron Design,
DFM and Yield
Jennifer Dworak

Southern Methodist University, USA
jdworak@smu.edu

Huawei Li
 ICT, China

lihuawei@ict.ac.cn

Embedded Software
Akash Kumar

Technische Universität Dresden, Germany
akash.kumar@tu-dresden.de

Chengmo Yang
University of Delaware, USA

chengmo@udel.edu

Fareena Saqib
University of North Carolina at Charlotte, USA

fsaqib@uncc.edu

Multicores
Hemangee Kapoor

IITG, India
hemangee@iitg.ernet.in

Interconnect
Hiroki Matsutani

Keio University, Japan
matutani@arc.ics.keio.ac.jp

Sudeep Pasricha
Colorado State University, USA

sudeep@colostate.edu

ML for EDA
Jana Doppa

Washington State University, USA
jana.doppa@wsu.edu
Mohammad Sha�que
NYU, Abu Dhabi, UAE

ms12713@nyu.edu

Security and Trust
Kanad Basu

University of Texas, Dallas, USA
Kanad.Basu@utdallas.edu

Reliability
Sanghamitra Roy

Utah State University, USA
sanghamitra.roy@usu.edu

Real-Time and Mixed Criticality
Jian-Jia Chen

University of Dortmund, Germany
jian-jia.chen@cs.uni-dortmund.de

Physical Design
David Pan

University of Texas at Austin, USA
dpan@ece.utexas.edu

Zhiru Zhang
Cornell University, USA

zhiruz@cornell.edu

Umit Ogras
University of Wisconsin, USA

uogras@wisc.edu

Quantum Computing
Robert Wille

Technical University of Munich, Germany
robert.wille@tum.de

Theo Theocharides
University of Cyprus, Cyprus

ttheocharides@ucy.ac.cy
Ramesh Karri

New York University
rkarri@nyu.edu

Copublished by the IEEE Council

on Electronic Design Automation,

the IEEE Circuits and Systems

Society, the IEEE Solid-State

 Circuits Society, and the Test

Technology Technical Council

March/April 2023
Volume 40 Number 2

ISSN: 2168-2364

Special Issue General Interest

 5 Guest Editors’ Introduction:
Special Issue on Testability

and Dependability of Artificial
Intelligence Hardware
Fei Su, Chunsheng Liu, and
Haralampos-G. Stratigopoulos

 8 Testability and Dependability
of AI Hardware: Survey, Trends,

Challenges, and Perspectives
Fei Su, Chunsheng Liu, and
Haralampos-G. Stratigopoulos

 59 Shaping Resilient AI Hardware
Through DNN Computational

Feature Exploitation
Elbruz Ozen and Alex Orailoglu

 67 Fault-Tolerant Neural
Network Accelerators

With Selective TMR
Timoteo García Bertoa, Giulio Gambardella,
Nicholas J. Fraser, Michaela Blott, and
John McAllister

 75 API-Based Hardware
Fault Simulation for

DNN Accelerators
Patrik Omland, Yang Peng, Michael Paulitsch,
Jorge Parra, Gustavo Espinosa, Abishai Daniel,
Gereon Hinz, and Alois Knoll

 82 On the Impact of Uncertainties
in Silicon-Photonic Neural

Networks
Sanmitra Banerjee, Mahdi Nikdast, and
Krishnendu Chakrabarty

 90 Analysis and Mitigation of
DRAM Faults in Sparse-DNN

Accelerators
Shamik Kundu, Arnab Raha, Suvadeep Banerjee,
Suriyaprakash Natarajan, and Kanad Basu

 100 On the Mitigation of Read
Disturbances in Neuromorphic

Inference Hardware
Ankita Paul, Shihao Song, Twisha Titirsha, and
Anup Das

 109 Using STLs for Effective
In-Field Test of GPUs

Josie E. Rodriguez Condia,
Felipe Augusto da Silva,
Ahmet Çağrı Bağbaba,
Juan-David Guerrero-Balaguera,
Said Hamdioui, Christian Sauer, and
Matteo Sonza Reorda

 118 T-Topology Coupler-Based
Bandpass Negative Group

Delay Active Circuit Design
and Test
Taochen Gu, Fayu Wan, Jingjie Zhou,
Qizheng Ji, Binhong Li, and Blaise Ravelo

 127 FPGA-Chain: Enabling
Holistic Protection of FPGA

Supply Chain With Blockchain
Technology
Tao Zhang, Fahim Rahman,
Mark Tehranipoor, and Farimah Farahmandi

http://dx.doi.org/10.1109/MDAT.2023.3241114
http://dx.doi.org/10.1109/MDAT.2023.3241114
http://dx.doi.org/10.1109/MDAT.2023.3241114
http://dx.doi.org/10.1109/MDAT.2023.3241116
http://dx.doi.org/10.1109/MDAT.2023.3241116
http://dx.doi.org/10.1109/MDAT.2023.3241116
http://dx.doi.org/10.1109/MDAT.2023.3241116
http://dx.doi.org/10.1109/MDAT.2023.3156016
http://dx.doi.org/10.1109/MDAT.2023.3156016
http://dx.doi.org/10.1109/MDAT.2023.3156016
http://dx.doi.org/10.1109/MDAT.2023.3156016
http://dx.doi.org/10.1109/MDAT.2023.3174181
http://dx.doi.org/10.1109/MDAT.2023.3174181
http://dx.doi.org/10.1109/MDAT.2023.3174181
http://dx.doi.org/10.1109/MDAT.2023.3174181
http://dx.doi.org/10.1109/MDAT.2023.3180977
http://dx.doi.org/10.1109/MDAT.2023.3180977
http://dx.doi.org/10.1109/MDAT.2023.3180977
http://dx.doi.org/10.1109/MDAT.2023.3180977
http://dx.doi.org/10.1109/MDAT.2023.3161599
http://dx.doi.org/10.1109/MDAT.2023.3161599
http://dx.doi.org/10.1109/MDAT.2023.3161599
http://dx.doi.org/10.1109/MDAT.2023.3161599
http://dx.doi.org/10.1109/MDAT.2023.3183545
http://dx.doi.org/10.1109/MDAT.2023.3183545
http://dx.doi.org/10.1109/MDAT.2023.3183545
http://dx.doi.org/10.1109/MDAT.2023.3183545
http://dx.doi.org/10.1109/MDAT.2023.3148967
http://dx.doi.org/10.1109/MDAT.2023.3148967
http://dx.doi.org/10.1109/MDAT.2023.3148967
http://dx.doi.org/10.1109/MDAT.2023.3148967
http://dx.doi.org/10.1109/MDAT.2023.3188573
http://dx.doi.org/10.1109/MDAT.2023.3188573
http://dx.doi.org/10.1109/MDAT.2023.3188573
http://dx.doi.org/10.1109/MDAT.2023.3202858
http://dx.doi.org/10.1109/MDAT.2023.3202858
http://dx.doi.org/10.1109/MDAT.2023.3202858
http://dx.doi.org/10.1109/MDAT.2023.3202858
http://dx.doi.org/10.1109/MDAT.2023.3202858
http://dx.doi.org/10.1109/MDAT.2023.3213998
http://dx.doi.org/10.1109/MDAT.2023.3213998
http://dx.doi.org/10.1109/MDAT.2023.3213998
http://dx.doi.org/10.1109/MDAT.2023.3213998
http://dx.doi.org/10.1109/MDAT.2023.3213998

DEPARTMENTS
 From the EIC
 4 Special Issue on Testability

and Dependability of
Artificial Intelligence
Hardware

 Partha Pratim Pande
 Conference Report
 137 The 2022 International

Conference on
Computer-Aided Design
(ICCAD)

 Tulika Mitra

 The Last Byte
 139 Is There an Answer?
 Scott Davidson

Image credit: Image licensed by Ingram Publishing.

http://dx.doi.org/10.1109/MDAT.2023.3243862
http://dx.doi.org/10.1109/MDAT.2023.3243862
http://dx.doi.org/10.1109/MDAT.2023.3243862
http://dx.doi.org/10.1109/MDAT.2023.3243862
http://dx.doi.org/10.1109/MDAT.2023.3243862
http://dx.doi.org/10.1109/MDAT.2023.3238340
http://dx.doi.org/10.1109/MDAT.2023.3238340
http://dx.doi.org/10.1109/MDAT.2023.3238340
http://dx.doi.org/10.1109/MDAT.2023.3238340
http://dx.doi.org/10.1109/MDAT.2023.3241567
http://dx.doi.org/10.1109/MDAT.2023.3241567

Copublished by the IEEE CEDA, IEEE CASS, IEEE SSCS, and TTTC IEEE Design&Test4 2168-2364/23©2023 IEEE

From the EIC

g The arTicles in this issue are divided into
two groups: 1) the first group comprises articles
that make up the Special Issue on Testability and
Dependability of Artificial Intelligence Hardware
and 2) the second group consists of general
interest articles.

The highlight of this issue is the Special Issue
on Testability and Dependability of Artificial Intelli-
gence Hardware. There has been plethora of recent
investigations on designing novel hardware archi-
tectures for artificial intelligence/machine learning
(AI/ML) applications. Though achieving high per-
formance and energy efficiency for the hardware
architecture is of paramount importance, testability
and dependability of these new architectures need
to be addressed before the mainstream adoption.
This special issue consists of seven articles from both
academia and industry addressing the broad topic
of testability and dependability of emerging AI hard-

ware architectures. We thank the guest editors, Fei
Su, Chunsheng Liu, and Haralampos-G. Stratigopou-
los, for making this special issue possible.

In addition, we present three general interest
articles, titled as follows: 1) “Using STLs for Effec-
tive In-Field Test of GPUs”; 2) “T-Topology Cou-
pler-Based Bandpass Negative Group Delay Active
Circuit Design and Test”; and 3) “FPGA-Chain: Ena-
bling Holistic Protection of FPGA Supply Chain With
Blockchain Technology.”

This issue also contains a report on the 2022
International Conference on Computer-Aided
Design (ICCAD) written by Tulika Mitra.

Many thanks to Scott Davidson for The Last Byte
article titled “Is There an Answer?”

I hope you enjoy reading this issue of IEEE
Design&Test.

 <

Digital Object Identifier 10.1109/MDAT.2023.3243862

Date of current version: 10 March 2023.

Partha Pratim Pande, Editor-in-Chief
Washington State University
Pullman, WA 99164-2752 USA

Special Issue on Testability
and Dependability of Artificial
Intelligence Hardware

52168-2364/23©2023 IEEE Copublished by the IEEE CEDA, IEEE CASS, IEEE SSCS, and TTTCMarch/April 2023

Special Issue on Testability
and Dependability of Artificial
Intelligence Hardware

Fei Su
Intel Corporation
Folsom, CA 95630 USA

Chunsheng Liu
Alibaba Inc.
Sunnyvale, CA 94085 USA

Digital Object Identifier 10.1109/MDAT.2023.3241114
Date of current version: 10 March 2023.

Haralampos-G. Stratigopoulos
Sorbonne Université
French National Center for Scientific Research
(CNRS), LIP6 Laboratory
75005 Paris, France

 ArtificiAl intelligence (Ai) hardware,
including AI accelerators and neuromorphic com-
puting processors, emerges as one new frontier in
the field of computing. There is an expedited par-
adigm shift in embracing bold and radical innova-
tion of computer architectures, aiming at the con-
tinuation of computing performance improvement
despite the slowed-down physical device scaling.
Testability and dependability of AI hardware need
to be addressed before mainstream adoption, espe-
cially in latency or throughput-critical, safety-critical,
mission-critical, or remotely controlled applications
(e.g., computer vision, autonomous driving, smart
healthcare, IoTs, and robotics).

The guest editors of this Special Issue on Testa-
bility and Dependability of Artificial Intelligence
Hardware have gathered manuscripts that cover
innovative research from academia and industry for
addressing the testability and dependability chal-
lenges of AI hardware arising from many aspects.

This special issue comprises one survey paper
and six articles. The survey paper [A1] from the

guest editorial team covers the state-of-the-art in
research and development of dependability and test-
ability solutions for AI hardware including digital or
analog implementations of artificial neural networks
(ANNs) and spiking neural networks (SNNs), used
in accelerators and neuromorphic designs. Trends,
challenges, and perspectives are also discussed in
this article.

In [A2], Ozen and Orailoglu point out that the
rules that govern the error resilience problem in neu-
ral networks deviate from those in general-purpose
computing. While deep neural networks (DNNs) may
inherently tolerate minor perturbations, there exists
the potential vulnerability caused by a large-magni-
tude hardware error. This article presents a method
where neural networks can learn and construct
self-checking mechanisms to detect and suppress
such large magnitude errors.

In [A3], Bertoa et al. present selective triple mod-
ular redundancy (TMR), an automated tool that ana-
lyzes the sensitivity of computations within neural
network inference to the overall network accuracy.
The tool then triplicates the most sensitive computa-
tions to increase the functional safety of the neural
network accelerator, without resorting to full TMR.

Guest Editors' IntroductionGuest Editors' Introduction

6 2168-2364/23©2023 IEEE Copublished by the IEEE CEDA, IEEE CASS, IEEE SSCS, and TTTC IEEE Design&Test

Guest Editors' Introduction

Prof. Partha Pratim Pande, the Associate Editor-in-
Chief Prof. Mehdi Tahoori, as well as the editorial
staff of IEEE Design&Test for making this special
issue possible.

Fei Su is a DFX and telemetry architect at Intel
Corporation, Folsom, CA 95630 USA. His research
interests include testability and dependability of
semiconductor circuits/chiplets, artificial intelligence
(AI)/ML hardware, cyber-physical systems, and edge/
cloud computing. Su has a PhD from Duke University,
Durham, NC, USA. He is a Senior Member of IEEE.

Chunsheng Liu is the leader of the DFT Team at
Alibaba Inc., Sunnyvale, CA 94085 USA. His research
interests include test infrastructure for high-performance
processors, FPGA and machine learning accelerators,
and high dependability of cloud computing hardware.
Liu has a PhD from Duke University, Durham, NC, USA.
He is a Senior Member of IEEE.

The proposed method allows designers to explore
the tradeoff between accelerator reliability and
hardware cost.

In [A4], Omland et al. propose an application
program interface (API)-based method for hard-
ware fault simulation to investigate the effect of
hardware fault on DNN output failure probabil-
ity for common DNN accelerators. In a proof of
concept presented in the article, speed ups of the
order of >100 compared to full hardware simula-
tions have been achieved.

Silicon-photonic neural networks (SPNNs) are
being explored as post-Moore’s law successors to
CMOS-based AI accelerators, thanks to their ultra-
high speed and ultralow energy consumption.
However, their accuracy and energy efficiency
can be catastrophically degraded because of the
sensitivity of underlying photonic components to
fabrication process variations and run-time uncer-
tainties. In [A5], Banerjee et al. present a method of
criticality assessment to identify susceptible com-
ponents of SPNNs. The results show that the criti-
cality of uncertainties varies significantly based on
both the location and the tuned characteristics of
the affected components.

In [A6], Kundu et al. focus on the reliability of
DRAM utilized as the main memory subsystem in
sparse DNN accelerators. Their analysis shows a
single fault in the encoded memory compression
bitmap causes a significant accuracy reduction in
classification applications. The authors present a sys-
tematic quality-aware mitigation strategy with a low
memory overhead.

In the last article of this special issue [A7], Paul et
al. study read disturb failures of a nonvolatile mem-
ory (NVM) cell used in neuromorphic hardware to
store model parameters. The authors propose a sys-
tem software framework to incorporate the insights
from analysis in programming model parameters on
NVM cells to mitigate the read disturbances.

We hope reAders will enjoy reading these articles.
We also hope any insights from this special issue will
inspire more researchers from academia and indus-
try to take a new adventure in this new field.

We would like to thank all the authors who
contributed to this special issue, the reviewers for
providing constructive feedback, the past Editor-in-
Chief Prof. Jörg Henkel, the current Editor-in-Chief

Appendix: Related Articles
 [A1] F. Su, C. Liu, and H.-G. Stratigopoulos, “Testability

and dependability of AI hardware: Survey, trends,

challenges, and perspectives,” IEEE Des. Test,

vol. 40, no. 2, pp. 8–58, Mar. 2023.

 [A2] E. Ozen and A. Orailoglu, “Shaping resilient AI

hardware through DNN computational feature

exploitation,” IEEE Des. Test, vol. 40, no. 2,

pp. 59–66, Mar. 2023.

 [A3] T. G. Bertoa et al., “Fault-tolerant neural network

accelerators with selective TMR,” IEEE Des. Test,

vol. 40, no. 2, pp. 67–74, Mar. 2023.

 [A4] P. Omland et al., “API-based hardware fault

simulation for DNN accelerators,” IEEE Des. Test,

vol. 40, no. 2, pp. 75–81, Mar. 2023.

 [A5] S. Banerjee, M. Nikdast, and K. Chakrabarty, “On

the impact of uncertainties in silicon-photonic

neural networks,” IEEE Des. Test, vol. 40, no. 2,

pp. 82–89, Mar. 2023.

 [A6] S. Kundu et al., “Analysis and mitigation of DRAM

faults in sparse-DNN accelerators,” IEEE Des. Test,

vol. 40, no. 2, pp. 90–99, Mar. 2023.

 [A7] A. Paul et al., “On the mitigation of read

disturbances in neuromorphic inference hardware,”

IEEE Des. Test, vol. 40, no. 2, pp. 100–108,

Mar. 2023.

72168-2364/23©2023 IEEE Copublished by the IEEE CEDA, IEEE CASS, IEEE SSCS, and TTTCMarch/April 2023

 Direct questions and comments about this article to
Fei Su, Intel Corporation, Folsom, CA 95630 USA; fei.
su@intel.com.

Haralampos-G. Stratigopoulos is a
research director of the French National Center for
Scientific Research (CNRS) at the LIP6 Laboratory,
Sorbonne Université, 75005 Paris, France. His
research interests include neuromorphic computing,
hardware security, and design-for-test of integrated
circuits and systems. Stratigopoulos has a PhD

from Yale University, New Haven, CT, USA. He is a
Member of IEEE.

8 2168-2364/23©2023 IEEE Copublished by the IEEE CEDA, IEEE CASS, IEEE SSCS, and TTTC IEEE Design&Test

Testability and Dependability of Artificial Intelligence Hardware

Testability and
Dependability of AI
Hardware: Survey,
Trends, Challenges, and
Perspectives

 ArtificiAl intelligence (Ai) and machine
learning (ML) algorithms have been a subject of
interest for several decades now. Although AI and ML
have gone through hype cycles of disappointment
and enthusiasm, recent algorithmic advancements,
in particular, deep neural networks (DNNs) [1],
as well as the availability of big data and the rapid
growth of computing power, have renewed interest
leading nowadays to applications in numerous dis-
tinct fields, for example, robotics, medicine, autono-
mous vehicles, computer vision, speech recognition,

natural language process-
ing, gaming, and so on.

DNN models are com-
putational intensive, with
their backpropagation
training process taking up
a number of operations in
the order of millions. Infer-
ence on trained models
requires a single forward

pass, but still the number of operations remains very
high. From a hardware perspective, this poses severe
challenges to data storage, movement, and process-
ing speed on conventional central processing units
(CPUs) with a traditional Von Neumann computer
architecture, commonly known as the memory wall
problem [2]. To this end, there are intense and ongo-
ing efforts nowadays toward designing dedicated and
customized processors for AI [3], [4], [5], [6], [7], [8],
[9], referred to as AI hardware accelerators, which
belong to the larger family of domain-specific com-
puting paradigms. Widely used AI hardware accel-
erators today are graphics processing units (GPUs)
and FPGAs, but orders of magnitude of energy-speed
improvement can be achieved with ASICs.

Digital Object Identifier 10.1109/MDAT.2023.3241116

Date of publication: 31 January 2023; date of current version:

10 March 2023.

Fei Su
Intel Corporation
Folsom, CA 95630 USA

Chunsheng Liu
Alibaba Inc.
Sunnyvale, CA 94085 USA

Editor’s notes:
Hardware realization of artificial intelligence (AI) requires new design
styles and even underlying technologies than those used in traditional
digital processors or logic circuits. Therefore, their dependability and
testability requirements, challenges, and solutions are fundamentally
different and unique. This survey article covers this very important topic
and provides insight to such issues.

—Mehdi Tahoori, Karlsruhe Institute of Technology

Haralampos-G. Stratigopoulos
Sorbonne Université, CNRS,
LIP6 Laboratory
75005 Paris, France

9March/April 2023

Another high incentive for designing AI hardware
accelerators is to push the execution of AI algorithms
from the cloud closer to the sources of data onto edge
devices [10]. This is driven by energy, bandwidth,
speed, availability, and privacy requirements. More
specifically, edge computing reduces the data transfer
requirement, thus saving energy and bandwidth. Sav-
ing bandwidth is important given the forecast that sev-
eral tens of billions of edge devices will be connected
to the internet in the near future. Several applications,
for example, autonomous vehicles, require low-latency
real-time computation which is slowed down due to
the communication with the cloud. Also, several appli-
cations require availability, and therefore they need to
be less dependent on communication with the cloud.
Finally, handling data locally offers privacy as opposed
to transmitting sensitive data over the cloud. Edge AI
is a challenging objective since edge devices have
limited resources and are often battery-operated. Typ-
ically, AI hardware accelerators embedded on edge
devices perform only inference with the DNN model
trained in software and uploaded upfront.

Having stressed that AI hardware accelerators
are pivotal in the AI world, many would believe that
neural networks on hardware inherit the remarka-
ble fault-tolerant capabilities of the biological brain.
Indeed, biological neural networks are capable
of regenerating, rewiring, or adapting network ele-
ments to make up for the damage, which is part of
their neuroplasticity ability [11]. This assumption
also stems from properties of neural networks, such
as their high parallelism and over-provisioning, that
is, there are more neurons available than the mini-
mum required for a certain cognitive task and many
neurons end up being ineffective. However, as it will

be discussed in more detail in a later section, recent
hardware-level fault injection experiments have
shown that this assumption is false. A neural net-
work is likely to be capable of learning even in the
presence of a high fault rate; however, the impact on
prediction accuracy can be nonnegligible or even
detrimental if a model is uploaded on a faulty hard-
ware neural network or if a fault occurs during the
lifetime of the hardware neural network.

For these reasons, the testability and dependabil-
ity of AI hardware accelerators are important issues
that need to be addressed already from the design
phase [12]. Inspiration can, of course, be drawn
from known and mature methodologies applied to
traditional computer architectures, but the architec-
tural particularities of AI hardware accelerators often
make such methodologies prohibitive in terms of
cost and quality, requiring the development of new
methodologies that are better suited and take full
advantage of the said architectural particularities.

The aim of this article is to provide a survey of
existing works on testability and dependability meth-
odologies for AI hardware accelerators and discuss
trends, challenges, and perspectives. The high-level
organization of this article into sections and their
main subsections is shown in Figure 1.

Neural network types
We distinguish two types of neural networks,

namely artificial neural networks (ANNs) and spik-
ing neural networks (SNNs). Both are inspired by the
brain structure composed of layers assembled by
neurons and synapses interconnecting the different
layers. The term “deep” in DNNs refers to the number
of layers going beyond just a few, allowing to extract

Figure 1. Structure of this article.

10 IEEE Design&Test

Testability and Dependability of Artificial Intelligence Hardware

more complex features. The number of layers, the
number of neurons within each layer, and synapse
connections define a network topology.

There are three main topologies applied to both
ANNs and SNNs: 1) fully connected (FC) networks;
2) convolutional neural networks (CNNs) [13]; and
3) recurrent neural networks (RNNs) [14]. Figure 2
shows an example CNN with FC layers forming the
last layers. In FC networks, the neurons of a new
layer are connected via synapses to the outputs of all
neurons in the prior layer. In CNNs, a convolutional
layer is composed of several feature maps. A feature
map is a plane of neurons where each neuron is con-
nected to the outputs of spatially nearby neurons
contained in a lower dimensional plane of the prior
layer, referred to as a receptive field. Each neuron has
a different receptive field located at different coordi-
nates of the prior layer. In a given feature map, all
neurons are constrained to share the same synaptic

weights, whereas synaptic weights change from one
feature map to another. Convolutional layers are
alternated with subsampling layers which are used
to downsample the output of the preceding convolu-
tional layer. There are different types of subsampling,
such as max pooling and average pooling. Max pool-
ing captures the maximum value of the receptive
field and processes it to the output, whereas average
pooling calculates the average value. CNNs allow
synapse reuse and reduce the number of synapses
compared with an FC network. In RNNs, neurons
can additionally receive as input their previous state
or the previous state of a neuron in a subsequent
layer, thus realizing an internal memory retaining
past information to forecast future outputs. RNNs are
used for learning on time-series or sequential data,
while FC networks and CNNs are feed-forward and
inputs are independent of each other.

In ANNs, data are represented as static numerical
values. Neurons apply a nonlinear activation func-
tion, such as rectified linear unit (ReLU), sigmoid,
and tanh, on the weighted sum of outputs of other
neurons, as depicted in Figure 3. The weights are sca-
lar values and correspond to the synaptic weights.

In SNNs, on the other hand, data are represented
with spikes processed in a continuous way in time,
which is similar to brain operation. Thus, they are
more biologically plausible compared with ANNs,
bridging the gap between the ML and the biological
brain in terms of computation speed and power con-
sumption [15]. SNNs form the basis of neuromorphic

Figure 2. Architecture of LeNet-5 CNN.

Figure 3. Artificial neuron.

11March/April 2023

computing as pioneered by Mead [16]. The most
hardware-friendly spiking neuron implementation
is the integrate & fire (I&F) model [17], depicted
in Figure 4. The neuron integrates the spikes from
incoming synapses, and when the potential of its
membrane exceeds a threshold, it fires a spike of its
own that propagates through synapses to other neu-
rons. It also resets the threshold so as to be able to
fire again. The neuron has two additional brain-in-
spired functionalities. It has a refractory period, that
is, it is allowed to fire only if a certain time is elapsed
since the last output spike, and a leakage behavior,
that is, the membrane potential decreases between
two consecutive input spikes. The synapse opera-
tion is different from ANNs and also resembles the
biological synapse operation. A synapse receives
spikes and in turn stimulates the membrane poten-
tial of postsynaptic neurons via a current. The most
common information representation in SNNs is rate
coding, whereby the information is encoded into the
firing rate over an observation period, but other rep-
resentations have been suggested, including time-to-
first-spike and interspike interval.

From a hardware perspective, there is a belief that
SNNs offer faster inference and lower energy con-
sumption compared with ANNs. This belief stems
from two SNN characteristics, namely the real-time
asynchronous spike flow and the sparsity of the spike
flow, which reduces neuron activities. In contrast,
ANNs have a frame-based operation, that is, for a layer
to perform its computation, the layer has to wait for
the computation of the previous layer to complete
and every individual neuron is being evaluated. How-
ever, SNNs are harder to train compared with ANNs
due to the noncontinuity of the spiking neuron’s
transfer function, as well as the additional parame-
ters a spiking neuron carries, for example, threshold,
leakage rate, refractory period, which could be sensi-
tive. In general, the discussion on the relative perfor-
mance between ANNs and SNNs is not trivial due to
the different input type, that is, the sequence of static
frames versus continuous-time event flow. Converting
a data set from frame-based to spiking format and vice
versa creates a bias in the comparison. In general, the
advantage of one neural network type over the other
is task-dependent, with the SNNs being ideally suited
for processing spatiotemporal event-based sensory
data. For an extensive discussion on SNNs and the
comparison with their ANN counterparts, the readers
are referred to [5], [18], and [19].

AI hardware accelerators
Silicon implementations of neural networks

appeared decades ago with early efforts demonstrat-
ing few-layers, few-neurons per layer networks [20].
Moving to larger designs for DNN acceleration, the
main challenge is the memory wall that limits the
throughput and increases power consumption. The
design ambition is, therefore, to overcome the mem-
ory wall by distributing the memory within close prox-
imity to the processing elements (PEs), for example,
the multiple–accumulate (MAC) units, or through
the interleaving of memory and PEs. Basic architec-
tures include the streaming architecture composed of
many cores with the layers mapped among the cores
and the single-core architecture, that is, in the form
of a systolic array that parallelizes the storage and
computation of the different layers [3]. SNNs typically
employ the streaming architecture with a core receiv-
ing and transmitting spikes via the address event
representation (AER) protocol that essentially imple-
ments a network-on-chip (NoC) communication
scheme [21]. Clearly, efficient mapping of the neu-
ral network algorithm onto the hardware becomes
of utmost importance and different neural network
topologies require different hardware designs to fully
take advantage of neuromorphic computing.

Figure 4. Spiking neuron.

12 IEEE Design&Test

Testability and Dependability of Artificial Intelligence Hardware

Analog and mixed-signal (AMS) implementa-
tions can offer orders of magnitude lower power
consumption compared with their digital counter-
parts, and therefore they are better-suited for edge
computing being capable of acting directly on sen-
sory data from the world–machine interfaces [22],
[23]. This is because transistors are operated in the
subthreshold region, and the main operations of a
neural network, that is, addition and multiplication,
can be performed efficiently in the analog domain.
Addition can be performed using Kirchhoff’s current
law, while multiplication can be performed with just
a few transistors. However, they are less robust due
to process variations and noise.

One way to reduce energy consumption is approx-
imate computing that involves two strategies. The first
uses approximate arithmetic units in the PEs [24]. The
second is termed network compression or quantiza-
tion [25]. It reduces the precision of the weights and
neuron activation values by transforming floating-point
numbers into narrow few-bit integers. At the extreme,
this results in binary neural networks (BNNs) that use
1-bit precision [26], further simplifying the network
architecture by using xnors instead of MAC units [27].
BNNs save energy and storage and can serve for imple-
menting deep models in resource-constrained edge
devices. Network compression results in accuracy loss
but it may be recovered through training.

Another design paradigm with tremendous poten-
tial for overcoming the memory wall is in-memory
computing where the matrix–vector multiplications
are performed within the memory itself [28], [29].
In-memory computing has two main embodiments,
namely performing arithmetic and logic operations
within the SRAM or using memristive crossbar arrays.

A memristive crossbar array is composed of hori-
zontal and vertical metal lines with a memristive
device placed at each cross-point intersection con-
necting the two metal lines, as shown in Figure 5. The
conductance of the memristive device implements
the synapse weight, horizontal lines are driven by
the voltage output of presynaptic neurons, and ver-
tical lines provide the current input of postsynaptic
neurons. Each column implements the dot product
Ii = Σj Gi,j • Vj and parallelized dot-products across the
columns implement efficient in-situ matrix-vector mul-
tiplication I = G • V in analog form, reducing computa-
tional complexity from (n2) to (1). Each memristive
device is augmented with an access device, as shown
in the 1-transistor/1-resistor (1T1R) architecture of

Figure 5, that allows selecting a memristive device for
programming while not disturbing the stored state of
other memristive devices. A memristive crossbar array
is accompanied by peripheral circuits (not shown
in Figure 5) if communication between crossbars is
implemented in the digital domain. These include dig-
ital-to-analog converters (DACs) and analog-to-digital
converters (ADCs), which contribute a large fraction of
the area and power consumption of the array macro.

There are several emerging nonvolatile memory
(NVM) devices that can be used to implement the
memristive device, including resistive random access
memory (ReRAM), phase change memory (PCM),
and spin transfer torque magnetic random access
memory (STT-MRAM) [30]. These devices are com-
pact and can perform read and write operations with
low power. However, they suffer from several imper-
fections, such as conductance variations and drifts,
which result in poor yield, stability, and endurance.
Therefore, enhancing the reliability of crossbar-array
computation is a subject of ongoing research.

Finally, 3-D integration technologies could offer
several advantages such as short interconnections,
high parallelism, high bandwidth, and small form
factors [31], [32].

A taxonomy of AI hardware accelerators is illus-
trated in Figure 6. The first layer defines the type of
neural network, that is, ANN or SNN. The second
layer defines different design flavors, that is, dig-
ital or AMS, with in-memory computing inserted
as a separate category. The third layer defines the

Figure 5. Memristive crossbar array.

13March/April 2023

implementation, that is, ASIC, FPGA, and so on, while
in-memory computing is further distinguished into
digital processing-in-memory, that is, SRAM-based
in-memory computing, and memristive crossbar
arrays. In Figure 6, we provide references to repre-
sentative designs with a focus on designs that have
been demonstrated on silicon. Regarding memristive
crossbar-array accelerators, most works present only
simulation results up to now. This list of references is
not meant to be complete. For recent and thorough
surveys on accelerator design for ANNs and SNNs,
the readers are referred to [3], [4], [6], [7], [8], [9],
and [5], respectively.

Fault criticality assessment

Introduction
In the context of an AI hardware accelerator,

many faults turn out to be benign: they are masked
before their effect reaches the output or produce an
output change that is tolerable, that is, it does not
translate to performance loss. This is thanks to the
network sparsity, the over-provisioning, the distrib-
uted computing, and the nature and sequence of
mathematical computations. Some faults, however,
will be critical and will affect the performance. A
fault classification is shown in Figure 7. The ability
to quickly assessing the impact of faults on the AI
hardware accelerator performance is very valua-
ble for performing early reliability analysis and for
guiding the development of efficient and cost-effec-
tive fault detection, fault tolerance, and fault repair
schemes by placing the focus on targeting the crit-
ical faults only.

A network is viewed as a distributed system
where neurons and synapses can fail independently
[58]. Given a large number of synapses and neu-
rons, the size of the fault space easily explodes, not
to mention the rest of the hardware components.
On the other hand, the fault impact is typically
expressed in terms of accuracy drop on the testing
set, which can contain several thousands of sam-
ples, while the time for a single inference can be
very long. For these reasons, performing fault sim-
ulation at the hardware level can be intractable,
thus necessitating fault modeling approaches at a
higher abstract level. As a matter of fact, performing
exhaustive fault injection even on a higher abstract
network representation may still not be feasible,
thus necessitating fault sampling.

Another challenge in fault modeling is that
the fault impact is determined by the interactions
between the network model, the data set, and the
AI hardware accelerator. When analyzing the fault
impact, the AI hardware accelerator architecture
and the scheduling of network operations on its
architectural components cannot be ignored [59].

Figure 8 shows a fault injection experiment flow.
Starting with a fault model, a fault list is created as
a subset of the fault universe possibly using fault
sampling. A single-fault assumption or multiple-fault
scenario with a user-specified fault rate can be con-
sidered in this step. Then fault injection is performed
on the AI hardware accelerator which could be

Figure 6. Taxonomy of AI hardware
accelerators.

14 IEEE Design&Test

Testability and Dependability of Artificial Intelligence Hardware

done at different insertion levels, that is, in a soft-
ware model, RTL level, microarchitectural level,
gate level, transistor level, on an actual hardware
prototype, or with radiation. For every fault scenario,
the fault impact is assessed and stored. After going
through the complete fault list, a report is produced,
for example, including the benign and critical faults,
the critical fault locations, and the fault rate that can
be tolerated.

Examples of fault criticality visualizations are
shown in Figure 9. In Figure 9a, the x-axis shows
the different layers and for each layer, there are two
columns, each corresponding to a different fault
type. A column is a colored bar possibly separated
into chunks of different colors. Each chunk of the
bar corresponds to a specific classification accu-
racy according to the color shading shown at the
bottom of Figure 9, and the projection on the y-axis
shows the percentage of neurons for which the fault
results in this classification accuracy. While Figure

9a shows the cumulative neuron criticality across
layers, Figure 9b shows the per-neuron criticality as
a heat map with the neuron number in the x-axis
and the layer number in the y-axis. Each orthogo-
nal corresponds to one specific neuron, and the
color of each orthogonal corresponds to the clas-
sification accuracy in the presence of a fault in
the neuron according to the color shading at the
bottom of Figure 9. Figure 9c displays the impact on
classification accuracy of synapse faults in the syn-
aptic matrix between two layers. Using such plots,
one can label faults as critical or benign and iden-
tify critical fault locations across layers and within
each layer.

As we will see next, most research works con-
sider bit-flips in the memories and registers storing
the network parameters, that is, synapse weights and
neuron activations. For this fault model, examples of
reliability assessment are shown in Figure 10. Bit-flips
can be injected with some bit error rate (BER) prob-
ability to assess the largest BER that can be tolerated,
as shown in Figure 10a. The experiment is repeated
several times, and summary statistics are visualized
in Figure 10a using box plots. The bottom and top
edges of the box indicate the 25th and 75th percen-
tile, respectively. The whiskers extend to the most
extreme data points without considering outliers,
and the outliers are plotted individually using the
“o” symbol and are not always aligned vertically for
illustration purposes. Figure 10a also illustrates the
baseline fault-free accuracy shown with the green
zone, the median shown with a dotted circle, and
the average accuracy across repetitions of the same
experiment shown with a red line. Bit-flips can also
be injected at individual bit positions as shown in
Figure 10b where the network parameter has an 8-bit
representation. For example, with the results in Fig-
ure 10b, we can identify those bits starting from the
least significant bit (LSB) that have no impact on the
accuracy if they are flipped and can be left unpro-
tected in a fault-tolerant strategy.

In the upcoming section, we survey several works
demonstrating fault injection experiments and
frameworks. Figure 11 shows different fault types
at different insertion levels. A taxonomy of works
is provided in Table 1 based on the fault insertion
level, while memristor crossbar-based architectures
are treated as a special category. In the upcoming
section, we summarize the general conclusions from
these experiments.

Figure 7. Fault classification. Images are from [57].

15March/April 2023

Fault injection experiments

Software level
The software and hardware implementation of

a neural network matches closely in terms of com-
ponent connectivity and data flow, thus allowing
performing fault injection in software in a more
time-efficient manner. This was noticed in early
works [58], [61], [62], [63] where structural behav-
ioral-level fault models were used in the main
software operators that support the network compu-
tational task, that is, neurons and synapses. Behavio-
ral-level fault types included stuck-at nodes, missing
or saturated neurons, errors in the summation or
the evaluation of the neuron’s nonlinear activation
function, errors in synaptic multiplication, disabled
or saturated weights, errors in learning rules, noisy
inputs, and so on. These behavioral-level faults can
be mapped to physical fault models and root causes
in hardware, that is, gate-level stuck-at faults and soft
errors, for both digital and analog circuit implemen-
tations of neural networks [64], [65]. In [58], a the-
oretical study is presented for feed-forward neural
networks (FFNNs) deducing the number of failing
neurons and synapses an FFNN can tolerate.

As there is a large body of work in this direction
for modern AI hardware accelerators, we categorize
them according to the two neural network types,
namely ANNs and SNNs.

ANNs
In [57], the fault model used is bit-flips in data-

paths and buffers. A wide range of data types are
considered, and bit flips are injected in different bit
positions. Fault injection is carried out in the open-
source DNN simulator framework Tiny-CNN written
in C++, where each line of the code is mapped to
the corresponding hardware component so as to

Figure 8. Fault injection experiment flow.

Figure 9. Fault criticality visualization. (a) Cumulative
neuron fault criticality across layers. (b) Per-neuron
fault criticality. (c) Synapse fault criticality.

16 IEEE Design&Test

Testability and Dependability of Artificial Intelligence Hardware

pinpoint the impact of the fault injection location
in terms of the underlying microarchitectural com-
ponents. The focus is on CNNs considering differ-
ent image classification tasks. Different types of
silent data corruption (SDC), defined as a mismatch
between the output of a faulty and the fault-free

inference execution, or “fault ratings” are proposed
taking into consideration that networks may rank
predictions based on a confidence score. Some
conclusions of this large-scale fault injection study
are: 1) different DNNs have different sensitivities to
SDCs depending on the topology, the types of layers,
the data type used, and the position of the bit flip;
2) failure in-time (FIT) rates can exceed the safety
standards, for example, ISO 26262 for automotive, by
orders of magnitude; 3) data types that provide more
dynamic value range are more vulnerable to SDCs
since there are likely to be redundant value ranges
that lead to larger-value deviation under faults. This
implies that just-enough numeric value range and
precision is advantageous from a reliability point of
view; and 4) normalization layers reduce the impact
of faults by averaging fault values with adjacent cor-
rect values.

In [66], the Ares framework is proposed that
simulates static bit-flips in the memory of the DNN
accelerator. Ares is built on top of Keras [119],

Figure 11. Faults models at different insertion levels. The chip image corresponds
to an AMS implementation of an FC network used as an on-chip classifier for BIST
purposes [60].

Figure 10. Reliability assessment using
bit-flips as a fault model. (a) Accuracy
drop for bit-flips with different BER levels.
(b) Accuracy drop for bit-flips at different
positions of the word representing a
network parameter.

17March/April 2023

which takes high-level DNN descriptions specified
in Python and executes them using either Theano
[120] or TensorFlow [121] backends. Fault injection
experiments are performed for several DNN models
and data sets to study the classification rate as a func-
tion of BER. Fault injection is performed across the
whole network, per-layer, and across network com-
ponents, that is, weights and activation functions.
The main conclusions of this study are: 1) a thresh-
olded behavior is observed where for small BERs,
the classification error is zero, but there is a BER
threshold beyond which the classification error rises
exponentially from zero; 2) there is a largely spread
fault sensitivity or resilience across the DNN models,
for example, the threshold varies by two orders of
magnitude; 3) the weight quantization impacts resil-
ience, that is, the larger the range of the possible
weight values is the lower the threshold is; and 4)
fault sensitivity across network layers and compo-
nents can vary by several orders of magnitude.

In [67], the FIdelity DNN resilience analysis
framework is proposed where hardware faults are
modeled in software, that is, TensorFlow [121];
thereafter, high-speed software fault injection is per-
formed. In this way, an analysis speedup is achieved
while maintaining the level of accuracy of RTL or
mixed-mode fault injection techniques. To map
hardware faults in the software, the key insight is that
hardware and software operations closely match,
and all operations affected by a fault can be sys-
tematically derived, thanks to well-defined dataflow
and scheduling algorithms. Given high-level archi-
tecture/hardware information and flip-flop (FF) FIT
rate, the framework captures the effect of hardware
faults to set a faulty output neuron using a reuse fac-
tor analysis for FFs. Faulty output neuron values are
derived considering that each FF value already cor-
responds to a software-variable state. A key aspect
of the framework is that it can treat logic transient

Table 1. Taxonomy of fault injection experiments
and frameworks.

errors in the data path and control FFs and not only
memory errors.

In [68], a methodology is proposed to reduce the
fault injection space and, thereby, the overhead of
exhaustive fault injection. The underlying observa-
tion is that most ML functions in a DNN model, that
is, convolution, ReLu, pooling, normalization, and
so on, are monotonic. This means that in a word
representing a model parameter, there exists an
SDC-boundary bit such that bit-flips at higher-order
bits would lead to SDCs and bit-flips at lower-order
bits would be masked. Based on this observation,
the binary fault injection (BinFI) fault simulator is
proposed that bisects the fault injection space and
finds the SDC-boundary bit with a binary-search-like
algorithm. BinFI is built on top of the TensorFlow
framework [121] duplicating the graph with custom-
ized operators.

In [69], a fault injection framework is proposed
that reproduces fault models and event rates
extracted from radiation tests. The ultimate goal
is to have the flexibility of a software-based fault
injector with a reliability assessment precision
close to this of an accelerated neutron beam radi-
ation-based fault injection experiment in a realistic
harsh environment.

The interested reader is referred to [70], [71],
[72], [73], [74], [75], [76], [77], [78], [79], [80],
[81], [82], [83], [84], and [85] for more soft-
ware-based fault injection experiments studying the
fault impact for different neural network models,
data type representations, layer types, network sizes,
pruned networks, compressed versus uncompressed
networks, and so on. Such experiments are also part
of several other works that will be discussed in the
upcoming sections and they are used for motiva-
tion or for guiding test and dependability solutions.
Many of these works developed at the same time
an in-house automated fault injection framework.
The development of automated, fast, flexible, and
accurate fault injection frameworks is an active area
of research. Examples include PyTorchFI [86] and
TensorFI [87], which are open-source and publicly
available, and CLASSES [88]. An interesting research
line is the development of ML-based frameworks
that based on a small number of fault injections
estimate the vulnerability for all parameters in the
DNN in a short time [89]. Such approaches will be
described in more detail in upcoming sections for
systolic-array DNN architectures at the gate level and

18 IEEE Design&Test

Testability and Dependability of Artificial Intelligence Hardware

for memristor crossbar-array architectures. Another
possibility is to use generic fault injection tools,
such as SASSIFI [122], NVBitFI [123], and CAROL-FI
[124], to emulate fault effects in the hardware plat-
form, that is, GPU, running the application.

SNNs
The fault-tolerant characteristics of SNNs trained

with different algorithms are studied in [90]. The
fault model is a synapse fault where a faulty synapse
is zeroed out or equivalently removed. Synapses
are selected to be faulty at random with different
failure rates. Results show that these different algo-
rithms have different resilience characteristics.
Resilience can greatly depend on the training algo-
rithm and data set, and it can also show large var-
iances according to the synapses that are selected
to fail. A common conclusion is that for all consid-
ered networks, resilience drops rapidly as fault rates
increase, and SNNs are not inherently resilient as it
is frequently cited.

In [91], the behavioral-level fault model pro-
posed in [100] (see the upcoming section) is used
to perform accelerated fault injection in deep SNNs.
The fault injection framework is built on top of the
SLAYER [125] and PyTorch [126] frameworks by
customizing the flow of computations and the faulty
SNN is mapped onto a GPU. The general conclusion
of this experiment is that saturation neuron faults
are the most lethal and can severely affect inference
regardless of the location of the neuron in the net-
work and that the impact of all other fault types, that
is, dead neuron faults and timing variations, may be
severe only for neurons in the last hidden and output
layer. At the extreme, timing variations could result
in a dead or saturated neuron. In other words, a neu-
ron that becomes permanently active has a greater
effect on inference compared to a neuron that is per-
manently silenced or presents timing variations in its
output spike train.

RTL level
In [92], fault characterization is performed

on an RTL design of a typical accelerator. Fault
injection is performed into the different registers
that latch data during the inference, that is, input,
weights, and intermediate layer computations. The
fault model includes permanent stuck-at faults and
transient faults occurring in a single random cycle.

In each fault injection experiment, a different fault
is randomly generated and injected by selecting
a random register and set of bits and a random
cycle in the case of transient faults. Fault charac-
terization is performed across the different register
types, layers, and components of fixed-point data
representation, that is, sign, digit, and fraction,
number of PEs, and network models. General con-
clusions are: 1) permanent faults are more critical
than transient faults; 2) stuck-at-1 faults are more
critical than stuck-at-0 faults due to the sparsity of
zeros; 3) registers storing intermediate data are
the most vulnerable, whereas input registers are
the least vulnerable; 4) permanent faults are more
critical in inner layers, that is, closer to the output,
while the opposite is observed for transient faults;
5) sign, digit, and fraction are in this order more
vulnerable; and 6) for permanent faults, the error
decreases with the number of PEs, while there is
no correlation in the case of transient faults.

In [93], an RTL-level fault injection framework
is proposed that drastically reduces the fault sim-
ulation time. It makes use of a multilevel structure
where on the lower level, the inference is split
into several blocks corresponding to the neural
network layers that run as standalone application
processes, and on the upper level, these processes
are synchronized.

Microarchitectural level
In software fault injection, the fault model risks

being unrealistic and faults can be mapped to
only a subset of hardware resources. In [94], the
concept of two-level fault injection is adopted to
evaluate the effects on CNN execution of faults in
the GPU’s scheduler and pipeline registers, two
microarchitectural components that otherwise
would be hidden in an abstract high-level CNN
model. The microarchitectural simulation requires
a prohibitively high time. To improve efficiency,
the two-level fault injection idea is composed of
the following steps: 1) perform microarchitectural
fault injection, that is, transient bit-flips; 2) observe
the effect on selected CNN tiles (i.e., matrix por-
tions); 3) merge the corrupted tiles’ output with
the other tiles in the convolution considering their
fault-free output to compose the layer’s output; and
4) continue the execution of CNNs at the software
level to check if the fault is eventually masked or it
propagates at the output creating an error. Finally,

19March/April 2023

a feedback analysis can determine the microar-
chitectural locations causing the observed critical
errors that should be targeted for hardening.

Gate level
In [95], fault injection experiments are performed

on a systolic array-based DNN accelerator. The core
of the systolic array is composed of a 256 × 256 grid
of MAC units. Each weight maps to exactly one MAC
unit, thus a faulty MAC unit can result in multiple
faulty weights. The systolic array is developed in
Verilog and synthesized at the gate level. The fault
model includes stuck-at faults at the gate level and
timing faults created by under-scaling the power sup-
ply which essentially emulates process variations.
It is demonstrated that training on a faulty systolic
array can result in a significant classification drop
when as few as four MAC units are faulty.

In [96], the impact of timing variations on the
hardware implementation of ANNs is studied. Tim-
ing variations could result from delay defects, pro-
cess variations, power supply noise, crosstalk, aging,
voltage over-scaling, or frequency overclocking.
Timing variations are modeled at the gate level by
introducing an extra delay variation in the range of
10%–40% into each gate relative to the nominal gate
delay. Results show that ANNs are sensitive to timing
variations with the error growing larger as the timing
variations worsen. Accuracy loss can be alleviated to
a large degree but not fully recovered if the ANN is
retrained under timing errors.

In [97] and [98], ML-based frameworks are pro-
posed for analyzing the functional criticality of
gate-level stuck-at faults in systolic array-based AI
accelerators. Fault injection targets not only the
interface/boundary level of a PE, but also all internal

nodes of a PE. The main challenge of such a task
is on computation/simulation overhead introduced
by a significantly large number of potential fault
injection points, for example, there will be tens of
thousands of stuck-at faults for a single 32-bit PE, and
billions for a 256 × 256 PE array. To this end, compu-
tationally efficient ML-based methods are proposed
to speed up the analysis. The basic idea is based on
the use of deep learning to predict fault criticality
by utilizing the structural and data flow features. For
example, in [98], a two-tier DNN-based model is pre-
sented, as illustrated in Figure 12. The first-tier DNN is
trained on a data set obtained from ground-truth col-
lection. The second-tier DNN is trained on a smaller
and targeted data set containing the critical faults
mispredicted as benign by the first-tier DNN. A gen-
erative adversarial network (GAN)-based method is
further used to augment the data for the second-tier
DNN, to minimize misclassification (i.e., misclassify
critical faults as benign). The transferability of the
proposed method is also investigated (i.e., if a fault
criticality model trained on a PE can be transferred
to evaluate a different PE). The results show that
there exists some inherent transferability across PEs
in the same array, mainly due to their identical topol-
ogies. On the other hand, more model retraining will
be needed if transferability is not met.

Transistor level
Transistor-level fault simulations can be per-

formed only at the neuron level or for small-sized
networks.

In [99], transistor-level short- and open-circuit
defects are injected into the fundamental logic
operators of a perceptron, that is, adders and multi-
pliers. Fault injection experiments in a shallow two-
layer classical fully digital spatial expansion ANN

Figure 12. ML-based method for criticality assessment [98].

20 IEEE Design&Test

Testability and Dependability of Artificial Intelligence Hardware

architecture have demonstrated that hidden layers
can tolerate defects even for high defect rates. How-
ever, depending on the affected bits or neurons,
there may be single defects that can influence the
inference accuracy. Defects in hidden layers can be
silenced out by a retraining operation with the hard-
ware in-the-loop even for high defect rates. In con-
trast, the output layer is a defect-sensitive layer, and
defects in this layer cannot be masked by retraining
necessitating a dedicated fault tolerance scheme.

In [100], defect simulations and Monte Carlo
analysis taking into consideration the technology
process design kit (PDK) are performed for a spiking
neuron. The different faulty behaviors are collected
and grouped so as to generate an abstract behavio-
ral-level fault model for spiking neurons that captures
the effects of low-level faults, that is, transistor-level
defects and process variations. Faulty behaviors turn
out to be either catastrophic (i.e., dead neurons that
are silenced even in the presence of input activity, sat-
urated neurons that fire nonstop even in the absence
of input activity, neurons with a stuck output, etc.)
or parametric (i.e., timing variations of the output
spike train such as variations in the time-to-first-spike
and firing rate). This bottom-up behavioral-level fault
modeling approach starting from transistor-level sim-
ulations can help generate fault models at a higher
abstraction level to be used for software fault injec-
tion, while still capturing the effect of underlying
root-cause transistor-level faults on the neuron’s
output, independent of its actual hardware imple-
mentation. For example, dead and saturated neuron
behavior can be modeled in the output spike train,
while timing variations can be modeled by varying
various neuron parameters, for instance the neuron’s
membrane potential threshold.

Chip level
Software-based fault injection is fast and flexible

but it ignores the behavior of the AI hardware accel-
erator. RTL-level, microarchitectural-level, gate-level,
and transistor-level fault injection takes into consid-
eration the hardware, but it is slow and inevitably
limited to specific hardware blocks.

FPGA-based hardware accelerators offer the pos-
sibility to perform realistic fault injection, including
faults that would be difficult to model with software
simulation, for instance faults affecting the configura-
tion memory or controlling modules. They also offer
the possibility to evaluate both accuracy degradation

and system exceptions, such as system stall and run-
ning overtime. Fault injection experiments on acceler-
ators implemented on FPGAs are presented in [101],
[102], [103], [104], [105], [106], [107], and [108]. In
particular, fault injection experiments are performed
on the FPGA-based FINN quantized neural network
(QNN) accelerator [56] in [101], [103], [104], and
[105], for the tinyTPU implemented on an FPGA in
[107], for FPGA implementations of custom ANN
accelerators in [102] and [106], and on neuromor-
phic FPGA-based hardware supporting SNNs in [108].

In [109] and [110], the soft error reliability of
CNN models running on microprocessors is inves-
tigated, analyzing the results for different compo-
nents of the microprocessor and precision bitwidth
configurations.

Radiation experiments
Experiences from radiation experiments on

different GPUs running different DNN models are
described in [81], [82], [83], and [84]. In [81], FIT
rates are scaled to a natural terrestrial environment.
Main observations are as follows: 1) crashes are
more frequent than SDCs but are less critical as they
can at least be detected; 2) all reported SDC rates are
higher than the 10 FIT limit imposed by the ISO 26262
safety standard for automotive, thereby the reliability
of GPU-based AI accelerators is paramount; 3) FIT is
dependent on the technology, that is, for FinFET, it
is an order of magnitude lower than that of standard
CMOS; and 4) error correction code (ECC) protec-
tion alone is insufficient to ensure high reliability.
In [82], the FIT rate is evaluated for different data
precisions, showing that it increases with precision
since it depends not only on the fault propagation
probability, but also on the probability of the fault
occurrence. In [83], the run-time of the inference
is tuned based on the beam flux such that the chip
experiences no more than a single bit flip event dur-
ing each application run. The study shows that with
the ECC/parity checking enabled, single-bit errors
are corrected, no SDCs are observed, and the most
stringent ASIL D requirement imposed by ISO 26262
is met. However, vulnerability to permanent faults
is observed, which shows that ECC/parity checking
must be complemented with periodic structural tests.

Accelerated radiation testing results for DNNs
running on FPGAs are reported in [85], [111],
[112], and [113]. In [85], it is shown that applying

21March/April 2023

selective triple modular redundancy (TMR) to only
the most vulnerable layers can mask a high percent-
age of faults. In [111] and [112], it is evaluated how
reducing the bit-width used for data representation
impacts the radiation sensitivity and failure rate. In
[113], it is shown that QNNs trained with fault-aware
training are more resilient to soft errors.

Finally, results on the reliability of Google Coral
tensor processing unit (TPU) to neutrons are reported
in [114], considering elementary operations and sev-
eral CNN models. It turns out that, despite the high
error rate, most neutron-induced errors only slightly
modify the convolution output and do not change
the detection or classification of CNNs.

Memristor crossbar-based architectures
The work in [115] studies the fault injection effect

in memristor crossbars. The fault model includes
stuck-at faults in the conductance of memristors after
programming. The conductance error is defined as
the difference between the final programmed value
and the target value. A device with a conductance
error higher than a positive threshold is considered
to have a stuck-on fault, that is, it freezes at a high
conductance state. Whereas a device with a con-
ductance error below a negative threshold is consid-
ered to have a stuck-off fault, that is, it freezes in a
low conductance state. Fault injection experiments
show that inference accuracy drops by more than
50% for a stuck-at memristor rate of 20%.

The work in [116] proposes a fault model for
SNNs using memristor crossbars for the con-
nection of the layers. Spike timing-dependent
plasticity (STDP) is used for learning. Some specif-
icities of the SNN design are that the output neu-
rons are implemented with lateral inhibition, and
synapses are off when there is no activity on their
connected neurons. The fault taxonomy is divided
into different synapse faults and neuron faults.
Synapse faults include dead synapses, degraded
plasticity, and synapse stuck-at faults. Neuron
faults include dead neurons and delayed spiking,
as well as faults specific to this SNN design, that is,
stuck-at or delayed lateral inhibition and delayed
synapse activation fault. Fault injection experi-
ments considered only the worst-case faults, that
is, dead neurons and dead synapse faults. Results
show that a high fault density is required for a
noticeable decrease in recognition rate. Moreo-
ver, for dead neuron faults, learning on a faulty

network is more critical than a fault occurring in a
fault-free trained network.

In [117], the susceptibility of ReRAM-based cross-
bar arrays to single-event and cumulative radiation
damage is investigated. Simulations are performed
using an experimentally derived memristor SPICE
model. Results for an ANN trained with the MNIST
data set indicate that the system is highly resistant
to transient single-event effects (SEEs), thanks to the
low cross section of the memristive device. Moreover,
the cumulative ionizing dose level corresponding to
the inference failure point is very large, and thus it
is concluded that ReRAM-based accelerators have
high radiation tolerance in normal environments.

In [118], it is proposed to train an ML classifier to
predict fault criticality in a DNN mapped to memristor
crossbars. The considered fault types are stuck-on and
stuck-off conductance in the memristor cell. The train-
ing set is generated by: 1) random fault injection for
which the overwhelming majority of analyzed faults
will be benign and 2) a misclassification-driven train-
ing (MDT) algorithm to quickly identify critical faults
so as to have a balanced training set. The MDT algo-
rithm runs an optimization where the DNN parameters,
that is, weights, are perturbed toward maximizing the
prediction error. In each iteration, the most significant
parameter based on gradient value is chosen. A fault is
injected in this parameter and is identified as a critical
fault if all samples in a batch of the data set are mispre-
dicted. The features from the benign and critical faults
used to train the ML classifier are: 1) fault location; 2)
fault type; 3) parameter significance; and 4) parameter
deviation amount. The fault criticality analysis can be
used to develop a fault tolerance solution that targets
only critical faults, thus leading to a significant reduc-
tion in the redundancy needed for fault tolerance. The
proposed criticality-aware fault-tolerant scheme used
in this work is to introduce spare columns for remap-
ping only columns in the memristor crossbar that
include cells with critical faults.

General observations from fault injection
experiments

Some common conclusions in the above fault
injection experiments are as follows.

1) The fault impact depends on the DNN topology,
type of layer, and type of activation function
used. Moreover, fault sensitivity across layers and
across neurons within a layer can vary by several

22 IEEE Design&Test

Testability and Dependability of Artificial Intelligence Hardware

orders of magnitude. Typically, the output layer is
a highly sensitive layer necessitating a dedicated
fault-tolerance scheme. Convolution and FC lay-
ers tend to spread the SDCs, while subsampling
layers tend to mask a significant portion of SDCs.
Moreover, very frequently, a bimodal behavior
is encountered: either the accuracy is negligibly
impacted by the fault, or the accuracy drops rap-
idly even approaching random guessing.

2) FIT rates of AI hardware accelerators can exceed
safety standards, which shows that reliability and
error recovery are of paramount concerns.

3) The accuracy drop is contingent on the data set, that
is, the application. The same fault can be benign for
one data set but can be critical for another.

4) Fault susceptibility depends on the data type
used. DNNs using data types of higher dynamic
range are more vulnerable. Still, even QNNs with
2-bit precision are shown to be vulnerable. Sus-
ceptibility also depends on the affected bit posi-
tion, with the most significant bits (MSBs) being
the most critical.

5) Stuck-at-1 faults furnish the largest accuracy drop
because typically over 99% of model parameters
have zeros in their MSBs.

6) For systolic array-based accelerators, by increas-
ing the number of layers or the number of neu-
rons per layer, the accuracy drop escalates [127].
This is due to the reuse of the systolic array across
multiple layers.

7) For memristor crossbar-based architectures, sin-
gle memristor yield and endurance are very low,
necessitating yield-rescuing methods.

8) For SNNs, saturation neuron faults seem to be the
most lethal, although dead neuron faults can also
cause significant accuracy drops.

Testability

Introduction
The goal of testability in AI hardware accel-

erators is no different from traditional hardware:
achieving acceptable test quality under managea-
ble cost. It is confronted by the same problems as in
the traditional test but with new challenges. While
some challenges can be handled by existing tools
and solutions, many still remain major problems in
today’s DFT applications. Some typical issues seen in
the industry are discussed below.

Being domain-specific, AI hardware accelerators
usually have some unique features that may not be
test-friendly. The most prominent one is the sea-of-
core design, for example, 1,472 cores in Graphcore
GC200 [128], 128 × 128 systolic array in Google’s TPU
[129], or even more such as 850 K cores in CS-2 [130].
While the notion of “core” in different accelerators
may be very different in size, cores in one design
are usually identical or very similar. From DFT and
physical design perspectives, these cores may be
too small to implement DFT on a per-core basis with
reasonable overhead. On the other hand, incorpo-
rating many cores in a physical partition could lead
to prohibitive costs for DFT or physical implemen-
tation and verification, while not taking the advan-
tage of the similarities among cores. Attempting to
achieve the best test quality with reasonable over-
head, there has been plenty of research on low-cost
testing of systems with identical cores [131], [132],
[133]. However, for today’s AI architectures, an opti-
mal solution might be further explored from other
angles, for instance the function structure may help
increase DFT test coverage [134], and function pat-
terns may become part of test patterns [135].

AI applications are memory-intensive, hence
many AI hardware accelerators require embedded
memories with much larger sizes than in traditional
ASIC designs. Several megabytes are common
practices, for instance 900 MB in Graphcore GC200
[128]. While these memories can be extensively
tested and repaired using today’s built-in self-test
(MBIST) tools, they can present major penalties
to power, performance, and area (PPA) [136].
Recently, it has been proposed to bring the com-
putation near to the memory or into the memory,
or using large external memory such as high band-
width memory (HBM) or wafer-bonding. These
solutions bring in new challenges for testing. For
instance, in-memory solutions may require under-
standing and creation of new logic and physical
fault models [137], while wafer-bonding neces-
sitates better solutions for test access, test power
control, and yield improvement [138].

Besides the issues mentioned above, existing
test challenges for traditional ASIC design may also
become increasingly intense in AI applications. For
example, current large AI hardware accelerators
require hierarchical DFT solutions that are scala-
ble with design size. However, since an AI hard-
ware accelerator is often a heterogeneous system,

23March/April 2023

hierarchical DFT needs a comprehensive solution
for automatic DFT insertion, verification, debugging,
and silicon bring up. Another popular difficulty stems
from physical design, that is, large accelerators often
use a tile-based design where no dedicated routing
channels are reserved for global routing. However,
complex DFT designs can create hundreds of global
signals for scan, MBIST, debug, and so on. This pre-
sents a huge overhead for top-level implementation
and verification. New solutions are necessary for
both efficient DFT and easy physical implementa-
tions [136], [139].

AI hardware accelerators are also facing pressure
from new marketing and technical trends. For exam-
ple, as one of today’s popular applications, automo-
tive-grade AI hardware accelerators require more
stringent screening than before to ensure zero defective
parts per million (DPPM), which has to be reflected in
the architectural level of DFT design. Test data analysis
and diagnosis are also critical for yield and reliability
learning [140]. Another typical new paradigm is the
3-D IC design, since large AI hardware accelerators are
often limited by physical geometry and cost. Chiplet
designs based on 2.5-D or 3-D methodologies can mit-
igate the challenges from die size, process, cost, and
so on, but necessitate a complete set of test solutions
from die level, stack level, to package level, which is
being addressed in the development of new tools and
test flows [141], [142], [143], [144].

Table 2 categorizes some of these challenges or
issues (left) and possible solutions (right), which are
discussed in this article. This taxonomy is not meant
to be comprehensive, but can be representative of
many testability activities in AI hardware designs.
Table 2 cites only works specific to AI hardware, but
more generic solutions will also be discussed, espe-
cially on the test architecture side, that are applica-
ble to AI hardware too.

DFT and ATPG

Test architecture
Plenty of research has been conducted on DFT

solutions for identical cores to minimize test over-
head and maintain test quality. The assumptions of
these techniques may still be valid for AI hardware
accelerators, but new solutions may be needed to
handle large AI designs with limited cost.

A straightforward idea is to broadcast the test
stimuli to identical cores, while comparing their test

responses for pass/fail. In [131], a test access mech-
anism (TAM) is designed to implement an on-chip
comparison of multiple identical cores. It contains
multiple stages of pipelines and several configura-
tions so that each core’s test can be implemented
in different modes. As such, it not only supports
comparing test responses from cores for manu-
facturing tests, but also provides diagnosability of
a core during silicon bring up and yield ramp up.
With on-chip comparison, test data volume can be
significantly reduced and so is test time. However,
for large AI designs with many cores, such broad-
casting-style solutions may encounter increasing
difficulty from routing and top integration. It also
needs some manipulations of test patterns from
standard ATPG tools.

In [132], another form of TAM is proposed sup-
porting similar features. It is a generalized time-multi-
plexed TAM, where the compressed test and control
data streams are serialized before going into the
decompressor. At the core level, designers can still
utilize the regular decompressor/compactor scan
architecture. This simplifies the core-level scan
channel configuration and decouples it from top-
level scan pin assignment. The designers can be flex-
ible in architecting a core-level scan scheme without
worrying too much about the top level. This can be
a major benefit for large AI hardware accelerator
designs with many cores but very limited scan pin
resources. Pattern retargeting, verification, and diag-
nosis flow are also supported, which are also critical
for today’s large AI hardware designs.

It can be seen that to take the advantage of sea-of-
core design style in AI hardware, on-chip processing
of test data may be preferred when implementation is

Table 2. New testability challenges for AI hardware
accelerators and possible solutions.

24 IEEE Design&Test

Testability and Dependability of Artificial Intelligence Hardware

feasible. There are several varieties in this domain. In
[133], a TAM design is presented for chips with mul-
tiple isolated identical cores. The proposed pipelined
architecture relies on forming nonlinear equations on
a very limited number of output pins that compress
the outputs from the identical cores and solve them
off-chip to reproduce the failure information of each
core. It uses test resources similar to testing a single
core and also supports accurate failure diagnosis.
In [178], a TAM based on a majority comparison is
presented. It also utilizes an on-chip comparator, yet
not to compare with an expected value but with other
core’s test data to determine a majority value. For
example, if more than half of the cores in the com-
parison present the same value, this value is a major-
ity value. This value is then compared with ATE data.
The test cost is close to that of a single core.

In [179], yield improvement is considered when
a multicore system contains spare cores. A compar-
ison-based TAM that is capable of handling multiple
spare cores is proposed. All faulty cores can be iden-
tified via low-cost comparison, and if the spare cores
are more than the faulty cores, the chip is still usable.
Using spare cores is also common practice in accel-
erators with many cores. Such designs usually pro-
vide a configuration with all good cores and several
“partial-good” configurations with different numbers
or locations of good cores for yield improvement.

It can be seen that for such DFT solutions to be
acceptable, several issues have to be resolved.
First, we should be able to manipulate the patterns
according to the scan architecture, for example,
retargeting the core-level patterns to the top level

without regenerating the pattern. Second, test quality
such as coverage should not be compromised, and
overhead should be minimized. And finally, from an
engineering perspective, some critical metrics such
as single-core diagnosability, verification effort, and
routing complexity should also be considered. For-
tunately, some of these requirements are already
supported well by current mainstream DFT tools.

Physical-aware DFT
The above works are mostly developed for tra-

ditional multicore designs. As discussed earlier,
many AI hardware accelerator designs share certain
features that may render these traditional solutions
either impractical or not as efficient, especially in
physical design. To address these AI-specific prob-
lems, some new industrial efforts are reported to
make DFT solutions more physical-friendly and
hence more practical.

In [136], a comprehensive set of DFT solutions tar-
geting AI hardware accelerators are proposed. In the
scan test, this work identifies that although acceler-
ators may contain many identical cores, these cores
are not as big or as complex as cores in a traditional
multicore system such as a CPU. A typical acceler-
ator for data center applications may contain thou-
sands of “small” cores, as shown in Figure 13a. At this
core level, any DFT insertion may incur a huge PPA
penalty, that is, compression logic, wrapper logic,
control logic, and routing for DFT signals. It is too
small for the DFT overhead to be economical. On the
other hand, if we group many small cores together to
create a big partition and apply DFT insertion at this

Figure 13. DFT solutions at different levels for many-core AI hardware accelerator
designs. (a) Small core level. (b) Core group level. (c) Big partition level.

25March/April 2023

level, as seen in Figure 13c, the run time, memory
requirement, power consumption, pattern count,
verification efforts, and other concerns may prevail
and render it infeasible, for example, ATPG or sim-
ulation cannot finish in a limited time. Meanwhile,
the similarities among cores cannot be effectively
exploited.

As a result, in [136], it is proposed to find a “sweet
spot” where a suitable number of small cores are
viewed as a “core group,” where DFT insertion, veri-
fication, pattern generation, and other activities are
done at this level, as shown in Figure 13b. Note that
in practice, this usually aligns with physical design
requirements, which is probably the most straightfor-
ward solution. However, if the physical partition is
too big or too small, DFT can still make architectural
changes to adapt to a suitable size of the core group.
After this core group is determined, existing technol-
ogies such as test data broadcasting, test response
on-chip comparison, pattern retargeting, and scan
channel pin-muxing can be effectively applied.

Note that, in practice, the logically identical cores
may not be physically identical. Synthesis and phys-
ical implementations may create various physical
instances from the same logic module, converting
a homogeneous system to a heterogeneous system
from a physical perspective. A feasible DFT solution
has to take this into account.

A streaming scan network (SSN) [139] is a
recently introduced tool that can target these phys-
ical challenges. SSN is a bus-based scan data distri-
bution architecture. It contains a scan data bus that
travels through all cores in the design, a per-core
controller (host) with Internal Joint Test Action
Group (IJTAG) support, and regular scan compres-
sion logic. The bus is connected to chip-level scan
pins, and scan data for any core in the system are
streamed in through the bus in the form of packets.
The concept of packets is different from that in net-
work switching, since an SSN packet is a fixed-for-
mat data segment that only contains scan data, no
address or opcode. The local host in each core is
preconfigured through IJTAG to learn how to offload
scan data from packets. The expected value can also
be streamed in for on-chip comparison. The routing
and heterogeneous problems with tile-based designs
are also mitigated, since only a single test bus is
routed through the entire chip. There is no need to
pin-mux the scan channels from various cores to top-
level scan pins, and the test bus interface is identical

for all cores. Another benefit is that due to the flexi-
bility of packeted test data, any cores can be tested at
any time. This can help effectively control test power
and improve test channel throughput. With compre-
hensive considerations of DFT and physical-design
requirements, this solution is especially suitable for
AI hardware containing many identical cores.

Function-aware DFT
Most of the aforementioned technologies are

common DFT solutions without an in-depth analysis
of the function mode of hardware. Many AI hard-
ware accelerator architectures are domain-specific
or even application-specific, hence a customized
DFT solution designed for a specific AI architecture
is intuitively best for PPA results. To serve this pur-
pose, a DFT architect needs to understand how AI
hardware works in a function mode such that the
DFT design can be optimized accordingly.

Motaman et al. [135] realize that due to the
unique architecture of AI hardware, traditional
stuck-at and delay tests may not be sufficient. They
study test methodologies and DFT requirements spe-
cifically for supervised ML systems. The hardware
architecture of FIFO-based and scratchpad-based
accelerators is analyzed. Test strategies for specific
hardware components such as MAC, global buffer,
activation functions, and so on are developed. These
solutions are more function-like and can help bridge
the gap between traditional test patterns and specific
AI hardware test requirements. They are also easy for
online tests to ensure product quality.

In [145], postmanufacturing testing of DNN accel-
erators is discussed. It is argued that the inherent error
tolerance can be leveraged to reduce the fault model
size and, thereby, the test time and cost. The idea
is that if a fault does not lead to inference accuracy
degradation for a given accuracy tolerance margin,
then it is noncritical and can be dropped. Only crit-
ical faults will be targeted during the test application.
Two approaches are shown considering a gate-level
implementation. The first approach is Boolean satis-
fiability (SAT)-based structural testing where a SAT
solver exhaustively checks all input combinations to
determine the fault criticality and generates a test pat-
tern able to detect it. The second approach is classi-
cal functional testing where the actual workloads, for
example, images, are used as test inputs.

Function mode operation is also studied in [134]
to improve test quality in accelerators with very large

26 IEEE Design&Test

Testability and Dependability of Artificial Intelligence Hardware

number of small cores. As suggested in [136], this
scenario can be handled by grouping small cores
into a core with a size suitable for both DFT and
physical implementations. However, it does not
exploit the similarity among small cores and test
quality may still be impacted if there are interactions
between small cores. In typical AI hardware accel-
erators, there is heavy data traffic between adjacent
cores, hence the test coverage on core boundaries
is essential. The work in [134] studies intercore
connectivity, function dataflow, and design homo-
geneity to derive a C-testable method that can run
ATPG for only a single core to reduce test cost and
maintain coverage and diagnosability. By exploring
design space, it also presents a hierarchical compac-
tion scheme for on-chip response compaction under
reasonable design constraints.

Figure 14 shows a systolic array example consist-
ing of 16 small cores (or PEs). Dataflow is only from
left to right and from top to bottom. Each PE has reg-
isters on the input sides but not on the output side.
If ATPG is performed at each PE level, coverage will
be unacceptable since PE itself is not well wrapped
by registers. However, if the ATPG run consists of
the five adjacent PEs inside the red line, faults in the
green PE in the middle will be fully covered. Note
that this ATPG pattern can be used to detect faults in
all PEs in the same scenario. Since an architecture
with small PEs usually contains a large number of
them, the overhead of such a scheme is low.

Figure 15 illustrates the sequence of testing the
whole systolic array. ATPG consisting of five neigh-
boring PEs is repeatedly used to detect faults in the
dark green PEs with high coverage. Each iteration
will cover a different set of PEs. Light green PEs are
those already covered by previous runs. As a result,
for a large systolic array (e.g., 256 × 256), most PEs
can be covered by small ATPG patterns in four test
runs. The uncovered PEs on the borders can be fully
tested in a top-off run.

Functional test generation
Functional test generation aims at generating

inputs, for example, images, that are capable of
sensitizing the fault and propagating its effect to
the output, leading to a different prediction with
respect to that of the nominal fault-free network.
This approach has been demonstrated for ANNs
[127], [146], [147], [148], [149], including memris-
tive crossbar array-based architectures [146], [147],

[149], and for SNNs [150], [151]. As shown in Fig-
ure 16, functional tests could be original images
from training and testing sets, adversarial examples
generated from original images, or synthetic images
generated from original images.

More specifically, starting from the available set
of input samples, one approach is to select samples
that are profoundly similar to other samples belong-
ing to different output classes, for instance a similar-
ity metric could be average pixel intensity [127]. A
second approach is to select samples that have been

Figure 14. Example of a 2-D unidirectional
pipelined dataflow in 4 × 4 PE-based
systolic array [134].

Figure 15. Testing 5 × 5 PE-based systolic
array in a checkboard style [134].

27March/April 2023

predicted correctly but with the least confidence
score [127], [151]. A third approach is to select sam-
ples that require more neural network parameter tun-
ing effort during training, where the effort is measured
with the change in the loss function in each training
step [149]. In [146] and [150], it is proposed to gen-
erate adversarial input samples, that is, perturb avail-
able input samples by adding a minimum amount of
noise aiming at forcing the predictions of the nomi-
nal and faulty network to differ. Another strategy is to
craft new samples by attaching watermarks to availa-
ble input samples [147]. The network is deliberately
trained to output a designated classification label for
a watermarked input, a technique that is called back-
dooring. Using the watermarked inputs as a valida-
tion set, a low validation accuracy indicates a fault.
In general, in all aforementioned works, the objec-
tive is to use samples that are more vulnerable to mis-
classification when faults occur. Finally, in [148], a
method is proposed for querying a network with a set
of specially crafted test inputs, to reveal if the model
parameters stored in the memory are faulty.

Functional tests can also be employed by the user
of the programmed AI hardware accelerator to vali-
date that the embedded DNN model has not under-
gone any malicious perturbations [152].

A related research direction is generating error-in-
ducing corner test cases for a trained DNN, which
thereafter can be used to retrain the DNN and
improve its accuracy [153], [154]. These corner test
cases are synthetic real-world input images resulting
from realistic transformations of seed images and
generated in a way such that they activate a large
percentage of neurons in the DNN. For example, for
DNN models controlling the perception of autono-
mous cars, these transformations include changing
brightness, changing contrast, shearing, rotation,
blurring, fog effect, rain effect, and so on.

In [155], an alternative functional test generation
is proposed, demonstrated for memristive cross-
bar-array architectures targeting detection of classifi-
cation accuracy drop due to process variability. This
approach is inspired by the alternate analog circuit
testing paradigm [180], [181]. First, a compact test
set of input images is generated with the maximum
possible diversity of responses, and a feature vector is
defined at the output of the network. An outlier detec-
tor in the form of a one-class classifier is trained in
the space of features using as training set instances of
the DNN with process variations but with acceptable

accuracy. Applying the compact test set, the outlier
detector serves as the first screening of nonconform-
ing devices. Devices that pass this test are presented
to a regressor that is trained using the same training
set to map the features to the DNN classification accu-
racy. A guard-band is defined around the minimum
tolerated accuracy to classify devices as passing, fail-
ing, or fuzzy, where the fuzzy devices fall within the
guard-band and are subject to standard testing using
the complete image set to obtain a precise decision.
Failing and fuzzy devices found in production testing
can be combined in batches with prior training data
to retrain the outlier detector and regressor.

In [156], a functional BIST scheme is proposed
for biologically inspired spiking neurons. The idea is
to test that the neuron is capable of producing all the
basic firing patterns, that is, regular spiking (RS), fast
spiking (FS), intrinsic bursting (IB), and chattering
(CH). The test stimulus is composed of low-resolu-
tion ramps applied at the bias nodes of the neuron
such that in one pass, all firing patterns appear. If one
or more firing patterns are missing, then the neuron
is declared to be faulty. Examples of functional and
faulty neuron responses are illustrated in Figure 17.

Online test

ATPG and functional testing
Many AI accelerators are used in datacenter

applications, where reliability, availability, and

Figure 16. Functional test generation. The street
images are from [154]. The chip image is from [60].

28 IEEE Design&Test

Testability and Dependability of Artificial Intelligence Hardware

serviceability requirements demand a certain level
of online test of memories and logic. However, such
tests involve both function mode and test mode,
imposing more difficulties on DFT designs.

A recent effort is reported by Amazon AWS in
[157], where high-speed serdes I/Os in an AI hard-
ware accelerator are used to transport scan test pat-
terns to test the processing cores. Test patterns are
converted to a format compliant with the correspond-
ing protocol and transported from peripheral compo-
nent interconnect express (PCIe)/universal serial bus
(USB), through standard advanced extensible inter-
face (AXI) fabric, to cores. Cores under test will be
idled from workload and isolated from the rest of the
logic. Although the major advantage of this solution is
test time reduction, it supports native online test capa-
bility, which is critical in a cloud scenario.

Returning to the functional test generation meth-
ods in [127], [146], [147], [148], [149], [150], and
[151] discussed in the previous section, as the result-
ant functional test set is compact, it can also be
fed periodically during mission mode in idle times
toward functional safety (FuSa).

In [158], different self-test approaches are pro-
posed for the compute units and control units of
an accelerator. For compute units that do not con-
tain complex sequential logic, test patterns based
on combinational ATPG are generated. For the
control units that contain finite-state machines and
sequential logic, it is proposed to use functional tests
in the form of executing DNN layers with carefully
crafted input and weight values. The methodology is

enhanced in [159] to cover both stuck-at and delay
fault models for both unit types.

Checksums and error codes
The idea here is to build invariants into the accel-

erator that hold true only in fault-free operations
while they are violated in the presence of faults.
Thus, checking them concurrently with the oper-
ation can point to abnormal operations. Invariants
can be built using checksums or error codes.

In [160], a sanity-check mechanism is proposed,
in which error detection checksums are constructed
by utilizing the linearity property of DNN MAC opera-
tions. These linear algorithmic checksums are added
to the convolutional layers and FC layers of DNN
models after the training. A hardware-based solu-
tion is proposed for integration into DNN inference
accelerators aiming at reducing the performance
overhead at the cost of a minor area and power
overhead.

In [161], additional penalty terms, called a bal-
anced checksum, are introduced into DNN train-
ing. The balance checksum aims at forcing the
DNN layer outputs to adhere to a linear invariant.
By adding the balanced checksum into the cost
function, error-checking invariants are embedded
in DNN model computations. These invariants
provide the computation error detection capa-
bility during the DNN inference phase, assuming
the error would lead to the violation of the trained
equilibrium. Furthermore, the introduced custom
regularization terms even help a better generaliza-
tion during the training.

In [162], several algorithm-based error detection
(ABED) techniques are presented focusing on the
verification of convolution operation, one of the
most resource-demanding operations in CNNs. Three
variants of ABED are presented to use checksums for
filters only, input feature maps only, or both filter
and input feature maps. Implementation complex-
ity, runtime overhead, resilience, and performance
tradeoffs are studied and compared for the three
ABED techniques. This work also addresses the over-
flow challenges of the checksum arithmetic induced
by reduced-precision fixed-point operations (e.g.,
8-bit integers). Resilience improvements are evalu-
ated using analytical models, error injection experi-
ments, as well as accelerated radiation experiments.

In [163], an AN code-based fault detection mech-
anism is proposed to protect the MAC units of the

Figure 17. Functional testing of a biologically inspired
spiking neuron.

29March/April 2023

DNN accelerator. AN codes add redundancy in the
data to detect faults during arithmetic operations.

In the case where the weights of the DNN model
are loaded encrypted in the memory, an online test
scheme is proposed in [164] that employs the pad-
ding bits. Padding is used to add a number of bytes
to the plaintext to reach a multiple of 16 bytes (i.e.,
128 bits) since the encryption is performed on 128-
bit blocks. According to the most popular standard,
if n bytes are added to pad the plaintext, then each of
the bytes will encode the value n. If a bit-flip occurs,
the on-chip decryption module will spread it creat-
ing multiple bit-flips affecting also the padding bits.
The fault detection scheme is then to check that the
decrypted padding bytes indeed encode the value n.
Using this approach, most single faults become crit-
ical, but they become detectable at the same time.

Software based
In [165], online test strategies based on Software

Test Libraries (STLs) are proposed for embedded sys-
tems running ANN applications. STL is composed of
selftest routines that are executed during boot-time
or run-time. The strategies are categorized into two
groups according to whether they incur or not a small
penalty in the inference time. Zero-penalty strategies
include: 1) run part of the STL during weight data
transfer when the PEs are idle and 2) test the inactive
PEs of a low-intensive computation layer and cover
all PEs in subsequent inferences using a scheduler
based on a round-robin algorithm. Small-penalty strat-
egies include: 1) one PE is executing a self-test while
the rest of the PEs share the AI workload; 2) apply the
entire STL between two consecutive inferences; and
3) arrange and apply the entire STL between succes-
sive layer computations when weight data transfer
is happening. The strategies are evaluated on CNNs
running on an open-source RISC-V platform. First,
STL is verified to have high stuck-at test coverage.
Then, the different strategies are evaluated based on
the inference time penalty and fault detection time
(FDT) tradeoff, where FDT is the worst-case time to
detect a fault from the moment of occurrence.

Memristor crossbar arrays
An online concurrent fault detection method for

memristor crossbar arrays is proposed in [166]. The
underlying observation is that faults affect dynamic
power consumption. An indirect simplified meas-
ure of the dynamic power consumption is used, in

particular, the number of logic “1s” at the outputs of
the ADCs digitizing the output current of the cross-
bar’s columns. An adder-tree design is used to count
the number of “1s,” which incurs a small area over-
head. The time series corresponding to the power
consumption and count of “1s” show a strong cor-
relation when faults are present, which allows using
the count of “1s” as a simplified metric. When abrupt
changes occur in the time-series data, the presence
of faults is indicated. Changepoints are detected by
examining time series within a sliding window. For
a current time point, the sliding window is centered
on it. The probability density functions of the points
in the left- and right-hand segments are estimated
and compared to examine if the current time point
is a changepoint. When a changepoint is detected,
the percentage of faulty cells in the crossbar is esti-
mated. A regression model is trained for this purpose
offline. A variety of independent feature variables
are used, including statistics of the time-series data,
average weight stored in the crossbar, and average
input applied to the crossbar’s input. Error correc-
tion is invoked when a high percentage of faults is
estimated. For example, the faulty crossbar can be
replaced with a redundant crossbar.

Yield improvement
In [167], the yield and accuracy-aware optimum

test of AI accelerators (YAOTAs) framework is pro-
posed. The framework deals with stuck-at faults in
MAC units of AI accelerators and considers output
bit position K up to which the inference error is
acceptable. Faults in the fan-in logic cones of bit
positions lower than K are considered noncritical,
while fan-in logic cones of bit positions higher than
K are considered critical. ATPG test patterns are
applied and if only noncritical faults are found in
the MAC, then the PE may be acceptable depend-
ing on how many such faults exist, the AI workload,
and the error tolerance limits demanded by the
application. If critical faults are found, then the PE
is permanently disabled. The map of faulty PE loca-
tions is programed in a fault status register. For sin-
gle instruction, multiple data (SMID) architectures
where PEs are interconnected with NoC/mesh, PEs
can be individually switched off and bypassed. For
systolic array-based accelerators, a deactivation pro-
tocol is proposed without hardware-level modifica-
tions. In particular, it is proposed to deactivate the
PE columns that contain PEs with critical faults and

30 IEEE Design&Test

Testability and Dependability of Artificial Intelligence Hardware

shift input data by inserting dummy rows of zeros.
This approach has no area overhead but decreases
the execution throughput. By adopting this frame-
work, the manufacturer can avoid discarding the full
accelerator chip because of the presence of a few
faulty PEs, thereby increasing yield.

In [115], two methods are proposed to recover the
fabrication yield loss of memristor crossbar-based
accelerators due to high memristor defect rates. The
first method consists of identifying memristors that
are stuck at certain conductance levels and perform-
ing retraining of the network where only defect-free
memristors are adjustable. In the case where the
performance loss cannot be fully compensated by
retraining, the second method presents a remapping
algorithm where memristor columns that are heavily
polluted, that is, contain many defective memristors,
are replaced by additional redundant columns.

In [168], spatial redundancy-based fault-tolerant
schemes are proposed for yield loss recovery of mem-
ristor crossbars. The fault model considers stuck-at
fault in memristor cells, that is, a memristor cell can
be stuck-at a high resistance state or low resistance
state. The fault-tolerant schemes apply to designs
where the dot-product operation is mapped to two
memristor crossbars. In particular, once the model
is trained, the mapping allocates the positive weights
to a “positive” crossbar and the negative weights to
a “negative” crossbar. The proposed fault-tolerant
mapping algorithm is to make the positive and neg-
ative weights eliminate the impact of faults on each
other. For example, if a positive cell is stuck-at, the
weight of the negative cell is enlarged accordingly to
approximate the target weight. This approach works
if only one of two cells in the same location in the
two crossbars is faulty at a time. Spatial redundancy
schemes are proposed in the case where the fault
rate is high, where the same concept of pairwise
fault elimination is used. These schemes make use
of redundant crossbars, crossbar columns, and cells.

In [169], methods are proposed for improving the
yield of memristor crossbars in the presence of mem-
ristor resistance variations and stuck-at faults. It is
assumed that the resistance variations and the loca-
tion of stuck-at cells can be detected. Two different
methods are proposed in the case of multilayer per-
ceptions (MLPs) and CNNs. For MLPs, the problem
of mapping the weight matrix of the trained model
to the conductance matrix of the crossbar is formu-
lated as a bipartite matching problem. The metric

used is the summed weighted variations across the
cells. Then, in a second step, the derived new weight
matrix is fed as a starting solution to an off-device
training algorithm. The algorithm aims at iteratively
reducing the weight with the maximal deviation. This
is done by scaling down the weight in each training
epoch and adapting the weights of the surround-
ing cells to recover the classification accuracy. For
CNNs, the method exploits the fact that two memris-
tor crossbars are used to represent positive and nega-
tive weights since the conductance of a cell can only
be positive. The weight is expressed as the difference
between the two conductances. Therefore, there is
a bitwise redundancy in the architecture. The pro-
posed method is to reprogram the resistance of one
cell of the pair to eliminate the resistance variation in
each cell. The same principle is used as a self-com-
pensating mechanism to tolerate stuck-at faults. In
the second step, off-device training and on-device
training with few iterations so as to consider the lim-
ited endurance of the memristors can be performed
to improve the classification accuracy.

A common technique to improve the error-re-
silience of DNN accelerators is to extract the mem-
ory fault map using postmanufacturing testing and
perform fault-aware retraining of the model. Doing
so for each faulty chip results in significant retrain-
ing overhead. In [170], it is proposed to train many
faulty chips at a time. The fault maps of chips are
merged into a unified fault map, which is then used
for retraining a single model that will be loaded to
every chip. A fault map is abstracted as a 2-D table
where an element corresponds to a memory cell. The
state of the cell is encoded to 1 or 0 for an S-A-1 or
S-A-0 fault, respectively. For contradictory locations
where S-A-1 of one fault map overlaps with S-A-0 of
another fault map, the policy is to select the polarity
that incurs less accuracy drop in the DNN inference.
The retraining speedup increases with the number of
fault maps merged. However, this speedup is at the
expense of an accuracy drop compared to per-chip
retraining. Empirically, it was observed that expos-
ing the DNN gradually to faults rather than exposing
it to all faults from the very start allows the DNN to
learn at a faster rate and achieve better accuracy.

Fault modeling and testing of memristor-based
memory technology

Memristors offer a compelling solution to the
scalability problem of AI hardware accelerators, as

31March/April 2023

they can be used as nanoscale synapses. They offer
also a promising in-memory computing architecture
that solves the data transfer bottleneck as discussed
in a previous section. Besides these applications in
an AI hardware context, memristor-based memory
technology has a large potential for replacing tra-
ditional memory technologies and is the focus of
today’s research. As memristors are susceptible to
process, voltage, and temperature (PVT) variations
and manufacturing defects because they are fabri-
cated with new materials and processes, there is a
large body of work that aims at understanding such
failure mechanisms and accurately model them to
develop optimal postmanufacturing memory tests,
including march test algorithms and DFT [171],
[172], [173], [174], [175], [176], [177], [178]. These
works find applicability in the context of AI hard-
ware accelerators implemented with memristive
crossbar arrays.

Dependability

Introduction
AI hardware is generally integrated into some

intelligent or autonomous systems required to oper-
ate throughout their life cycle in a highly dependa-
ble manner. The dependability issues of AI hardware
have aroused great interest in recent years. Depend-
ability is a broad term used to define the ability of
a system to deliver its intended service [183]. Any
system, including AI hardware, can be viewed as
a group of components integrated into one single
entity to serve the purpose of delivering a certain
service (e.g., AI algorithm acceleration for an AI
accelerator). Throughout the life cycle of system
deployment, there may be a service failure trig-
gered by intrinsic or extrinsic effects, whereby the
delivered service deviates from the intended one.
The dependability of a system is the ability to avoid
such service failures that are beyond the acceptance
level.

Dependability encompasses a broad spectrum of
attributes, which are quantities to measure dependa-
bility from various perspectives. The main attributes
include reliability, availability, maintainability, and
safety [183], [184].

• Reliability, availability, and maintainability are
three highly related attributes, which are usu-
ally measured by statistical metrics. Reliability

denotes the continuity of the correct service. The
level of reliability is commonly specified in terms
of mean time to failure (MTTF) [184]. Maintaina-
bility denotes the ability to repair when a service
failure has occurred. It can also be specified as
a statistical term with the mean time to repair
(MTTR) metric which represents the expected
system down time (including repair time) [184].
Lastly, availability denotes readiness for correct
service. It can be expressed as a function of MTTF
and MTTR as A = MTTF/[(MTTF+MTTR)] [184].

• Safety denotes the ability of a system to not cause
harm to people, things, or the environment.
Safety includes FuSa and safety of the intended
functionality (SOTIF). FuSa is defined as the
absence of unreasonable risk due to hazards
caused by malfunctions [185], [186], [187]. On
the other hand, SOTIF focuses on the absence of
risks caused by performance limitations of the
intended behaviors or by reasonably foreseeable
misuse by the user [188].

We note that security is often not characterized
as a single attribute of dependability. While highly
related to dependability, security is considered a
composite notion combining confidentiality, availa-
bility, and integrity attributes [184].

From a dependability perspective, there are var-
ious threats leading to a potential violation of the
targeted goal. A threat at the component operation
layer is usually called a fault. There are two main cat-
egories of faults: intrinsic faults and extrinsic ones.
The former may be originated from aging effects,
device variability, latent manufacturing defects, and
susceptibility to environmental conditions (e.g.,
radiation causing soft errors, electrical/mechanical
stress). On the other hand, there are some faults
caused by system inputs (e.g., malicious inputs to AI
systems, or user misuse), which are said to be extrin-
sic or external.

There are a variety of techniques to improve the
dependability of a system, including fault prevention,
removal, tolerance, and prediction. Fault tolerance
is one of the most popular means aiming at tolerat-
ing a fault in a functional system. There are different
levels of fault tolerance requirements, for example,
fail-operational, fail-safe, and so on. A fail-opera-
tional system upholds the continued functionality
and intended services in the presence of a fault.
There are two main subcategories: 1) upholding

32 IEEE Design&Test

Testability and Dependability of Artificial Intelligence Hardware

service without performance degradation and 2)
with degraded performance. The latter is commonly
referred to as fail-degraded or fail-reduced. A fail-
safe system aims at transitioning the system to a
well-defined condition to maintain a safe state in the
event of faults. The FuSa mechanism is one example
of means to achieve a fail-safe property. Note that
there is another term “fail-silent,” which is described
as the guarantee of no service (e.g., no system out-
put) in the event of failures. Such a silent state can
be viewed as a specific defined safe state, thus from
this perspective, fail-silent can be considered as a
subcategory of fail-safe.

As AI hardware provides service to more and
more mission-critical or safety-critical applications,
these hardware elements need to be evaluated
for compliance with the dependability goal (e.g.,
safety). In general, they share the same dependa-
bility theory foundation and requirements as other
hardware (e.g., traditional general-purpose proces-
sors). However, there are several novel dependabil-
ity challenges as well as opportunities introduced
by unique characteristics of AI hardware comput-
ing architecture, application, and also research and
development cultures.

First, AI hardware goes under a new comput-
ing paradigm called “domain-specific computing”
[189]. Domain-specific computer architecture with
domain-specific hardware acceleration has been
introduced in recent years to address performance
needs that general-purpose computing is hard to
meet. This emerging computing paradigm shift is
expected to bring new opportunities to AI hardware
dependability method development. For example,
while many traditional application (domain)-agnostic
fault tolerance techniques, for example, ECC or TMR,
are commonly used in general-purpose computing,
an alternative technique with exploiting domain-spe-
cific characteristics of AI hardware could be pursued
to achieve better efficiency in terms of PPA.

As discussed before, many research works sug-
gest that DNNs have inherent resilience to moder-
ate variations of parameters and activations. Such
approximate nature of DNNs enables the devel-
opment of approximate computing to support
efficient AI learning in resource-constrained hard-
ware, especially for inference. However, the actual
impact of AI hardware faults could be more severe
on AI application service results, for example, clas-
sification accuracy. It demands thorough hardware

fault analysis and novel lightweight fault-tolerant
techniques exploiting the architectural properties
of AI hardware.

We also note that some research suggests
deep-learning models may have an inherent weak-
ness against input perturbation, for example, adver-
sarial examples. The adversarial robustness of DNNs
has received particular attention, and there is a
rapidly growing body of research work in this field
[190], [191]. Such adversarial inputs can be viewed
as external/extrinsic faults. In this survey article, we
focus on dependability against intrinsic faults, that
is, those induced by AI hardware internally while
potentially stressed by environmental effects or
workloads. Other security threats that will not be
covered in this survey include DNN model IP theft
[192], [193], [194], backdoor attacks on DNNs per-
formed when training is outsourced [195], [196],
and fault injection attacks [197], [198].

Another characteristic of AI hardware is that it is
often an integral part of some AI-based solutions con-
sisting of multiple interacting system layers—from
hardware/physical to software/application. From
this perspective, AI hardware dependability strate-
gies should use a system-based approach beyond the
techniques limited to local hardware. The concept
of cross-layer dependability or cross-layer resilience
[199], which leverages the inherent fault-tolerance
of multiple layers, should be used for AI hardware
to exploit domain-specific faults at the system level.
Moreover, heterogeneous computing containing AI
accelerators along with general-purpose CPUs and/
or FPGAs has gained mainstream adoption in the
computing industry [200]. There exist far greater
opportunities for exploiting heterogeneity to achieve
system-level dependability.

Deep-learning-based AI has become a revolu-
tionary tool in many industry fields, with seemingly
unlimited potential to outclass traditional tech-
niques. This is a burgeoning field filled with oppor-
tunities as well as chaos, much like the new kind of
“Wild West.” We see that industry and academia are
eager to push out AI innovations, with new architec-
tures and higher performance expressed mainly with
the tera operations per second (TOPS) metric, so as
to battle for technical leadership in this rapidly grow-
ing field. In general, the AI field is permeated by a
pioneering and risk-taking spirit. On the other hand,
conservatism is fundamental in the dependability
field (especially for safety). It is in sharp contrast

33March/April 2023

with the pioneering spirit and self-regulation philos-
ophy. A paradigm shift is needed to bridge the gap
between them. Over the past few years, there have
been growing efforts in this direction. For example,
Europe has started legislation to make the use of
AI safer and more ethical, such as in critical infra-
structure impacting people’s lives and health [201].
Still there is a considerable gap between the AI
dependability goal and the available solutions. This
is a research frontier where the technical community
can contribute more to bridge the gap by introduc-
ing new methods.

Design-for-dependability aims at enhancing the
reliability, availability, maintainability, and safety
features of the AI hardware accelerator. All these
attributes boil down to rendering the AI hardware
accelerator error-resilient. We classify the existing
design-for-dependability approaches into four cate-
gories, as illustrated in Figure 18. The first category
includes model-based approaches where the goal is
to derive a model that meets the performance require-
ments and additionally it has intrinsically built-in or
programmed error-resilient capabilities such that by
construction when mapped onto hardware, it is capa-
ble of tolerating certain hardware-level faults. The
second category includes proactive hardware-based
techniques where the goal is to make the accelera-
tor design passively tolerate certain hardware-level
faults. The third category includes reactive hard-
ware-based techniques where the goal is to make the
accelerator react to an occurring fault in realtime,
including built-in monitoring of fault occurrence
and low-latency error recovery whenever a fault has
occurred. The final fourth category includes cross-
layer approaches where the error tolerance objective
is shared between the model and hardware.

A taxonomy of existing techniques under the dif-
ferent categories is provided in Table 3. These tech-
niques will be presented in more detail next.

Model-based approaches
Figure 19 combines and illustrates model-based

approaches that will be discussed next in detail.

Model training modification
A number of works propose to achieve fault toler-

ance by modifying training. The first method is to add
artificial faults and noise into the network during train-
ing such that the network learns to tolerate faults [61],
[202], [203]. A second method is to restrict weights

to have low values since intuitively fault-tolerance
degrades by the use of large values [202]. A third
method is to add a penalty term to the training cost
function that takes into account errors that arise due
to faults and multiply the penalty with a regulariza-
tion parameter that controls the tradeoff between
the degree of fault tolerance and inference accuracy.
The underlying idea is to bias the solution toward a
fault-tolerant network. Approaches in this category
include constraining the weights to lie within a lim-
ited range toward an even weight distribution [204],
[205], [206]. A fourth method is to combine the train-
ing process and fault-tolerance objective into an opti-
mization problem solved by nonlinear optimization
algorithms with the aim to learn a network model that
performs the desired task and at the same time fulfills
fault-tolerance constraints [207], [208], [209], [210].
A fifth method proposed in [211] considers construc-
tive training in the presence of faults, where neurons
are incrementally added whenever the network fails
to learn until a satisfactory learning or a user-defined
maximum network size is reached.

The aforementioned approaches are early works
targeting shallow FC networks and considering faults
at the behavioral level. They laid the foundation of
several approaches for modern AI hardware acceler-
ators presented recently which are discussed next. A
thorough and comprehensive review of these early
approaches is provided in [212].

Fault-aware training
In [213] and [91], it is demonstrated for ANNs

and SNNs, respectively, that training with drop-
out improves error resilience. Dropout was origi-
nally proposed in [276] to prevent overfitting and
reduce the generalization error on unseen data.
The idea is to temporarily remove neurons during

Figure 18. Design-for-dependability
approaches.

34 IEEE Design&Test

Testability and Dependability of Artificial Intelligence Hardware

training with some probability p, along with their
incoming and outgoing connections. At test time,
the final outgoing synapse weights of a neuron
are multiplied by p. For a network with n neurons,
there are 2n “thinned” scaled-down networks, and

training with dropout combines exponentially
many thinned network models. The motivation is
that model combination nearly always improves
performance, and dropout achieves this efficiently
in one training session. The reason why dropout
is a natural fault-aware training approach is that it
equalizes the importance of neurons across the net-
work, resulting in more uniform and sparse activity
across the network. Therefore, if a neuron becomes
faulty, this turns out to have no effect on the overall
inference accuracy. In [91], it is demonstrated that
training the SNN with dropout can nullify the effect
of dead neuron faults and neuron timing variations
in all hidden layers, while the SNN can withstand
a multiple-fault scenario with high dead neuron
rates. A technique equivalent to dropout, called
erasure regularization, is to set neuron activations
and weights to zero during training [214].

In [215], an error injection layer is developed that
allows injecting faults according to a fault model dur-
ing training time. The FINN FPGA-based QNN accel-
erator for CNNs [56] is adopted for the study. The
focus is on two main fault types for CNNs, namely
single-channel stuck-at faults and the same pixel in
all channels stuck-at. Training is performed on a GPU
and fault injection on FPGA. Results show that this
fault-aware training approach: 1) improves the error-
free accuracy by behaving like a regularizer; 2) leads
to highly fault-tolerant networks with accuracy very
close to the error-free one; and 3) offers an improved
hardware cost versus worst-case accuracy tradeoff
when selective TMR is used to compensate errors in
the most critical layers.

Another fault-aware training approach is to inject
bit errors in the weights during the training process.
This strategy has been investigated in [214], [216],

Figure 19. Model-based approaches.

Table 3. Taxonomy of design-for-dependability approaches.

35March/April 2023

and [217] showing that it allows a margin for volt-
age reduction in the memory of the DNN accelera-
tor, thereby helping to reduce energy consumption.
In other words, the accuracy drop due to bit errors
resulting from voltage under-scaling can be compen-
sated by this fault-aware training approach.

Training with noise
In [218], [219], and [220], it is shown for mem-

ristor crossbar-based architectures that injecting
noise during software training enhances the robust-
ness of inference to the nonideal effects of memris-
tor crossbars. In [218], a Gaussian noise source is
incorporated at the crossbar outputs, while in [219]
and [220], a random noise term is injected into the
weights during training.

Co-optimizing inference accuracy and fault
tolerance

Techniques to unify inference accuracy maximi-
zation and fault-tolerant improvement optimization
are proposed in [90], [221], and [222]. In [90], a
variant of an evolutionary optimization-based train-
ing algorithm for SNNs is proposed where the fit-
ness function is redesigned aiming at improving the
error-resilience capability. In particular, the fitness
function becomes a weighted sum of the baseline
accuracy and the average accuracy obtained on a
faulty version of the network when imposing a cer-
tain synapse fault rate. In [221], process variations
and noise are modeled as random variables and are
incorporated into the weights of the neural network
during training. In [222], a framework is presented
that utilizes a Bayesian neural network to conduct
variation- and defect-aware training. The approaches
in [221] and [222] are demonstrated for memristor
crossbar-based architectures.

Restricting numerical ranges
The range of parameters inside each layer of

a DNN can vary a lot. This can be a major source
of vulnerability to bit errors in DNNs. For example,
considering a conventional fixed-point data format,
the variation in the first few MSBs can be very detri-
mental to small parameter values. In [219], it is pro-
posed to use the dynamical fixed-point (DFP) data
representation formation that allows to adaptively
change the location of the decimal point based on
the range of data. In particular, by left shifting the
decimal point position, we can make sure that there

are no unused MSBs. In [223], to reduce the vulner-
ability surface, layer-wise quantization techniques
are proposed to tighten the quantization margins to
match the utilized range in each DNN layer. Also, a
new regularization method, called outlier regulari-
zation, is introduced in the training phase to further
tighten the numerical range and shape the parame-
ter distributions.

Model modification
In [229], it is proposed to augment the trained net-

work by replicating critical neurons and their asso-
ciated connections. A neuron and its replica have
half the weights of the original neuron to maintain
the network mapping. The underlying idea is that if a
critical neuron fails, then the effect on the inference
will be lower, thanks to spatial redundancy.

In [230], it is proposed to prune unimportant
nodes in the network according to a sensitivity anal-
ysis and then retrain the pruned network. Redundant
nodes are also introduced so as to share the task of
critical nodes.

In [231], a method is proposed to enhance the
error resilience of DNNs by modifying just the output
layer that performs the binary classification. Typi-
cally, an ensemble of independent logistic classifiers
is used, each implementing a winner-takes-all rule
by one-hot encoding. Error-correcting output code
(ECOC) learning is applied to optimize the cod-
ing matrix and increase the Hamming distance of
codewords assigned to different classes. This work
proposes a collaborative logistic classifier extended
from the logistic classifier to ease neuron competi-
tion and improve the error capacity. Increasing the
decision distance on final classification is shown to
rectify the accuracy degradation induced by faults
across the complete architecture. The method is
cost-effective, scales to any network size, and can
be easily integrated with existing hardware-level
fault-tolerant techniques.

Fault-tolerant model search
In [234], a neural architecture search (NAS)

algorithm, such as the one proposed in [277], is
employed to discover a fault-tolerant architecture.
The employed NAS algorithm uses reinforcement
learning rewarding architectures toward maximiz-
ing performance. In this work, the NAS algorithm
is modified to add a second term in the reward
that expresses fault tolerance to bit flips (FT-NAS).

36 IEEE Design&Test

Testability and Dependability of Artificial Intelligence Hardware

Another version of the algorithm computes the first
term of the reward, that is, the classification accu-
racy, by inducing faults during training (FTT-NAS).
The hand-designed networks show performance
degradation already with a very small bit-flip rate.
Instead, the network found by FT-NAS shows a
graceful degradation with an increasing error rate,
whereas the network found by FTT-NAS achieves
near baseline accuracy for a high error rate. The
discovered fault-tolerant architectures are inspected
and they are found to establish double connections
between some pairs of nodes. In other words, sensi-
tive connections are identified by the algorithm and
redundant paths are added for defending against
faults.

Proactive hardware-based approaches
Traditional fault-tolerant methods continue to

play critical roles in AI hardware. For example, ECC
is used to protect the memories of AI hardware accel-
erators [81], [83], [84], [264]. The Razor technique
[278], aiming at detecting and correcting circuit tim-
ing errors, is also used in some AI hardware accel-
erator designs [257], [267], [268]. Besides these

standard domain-agnostic fault-tolerant techniques,
there are other different proactive hardware-based
approaches for AI hardware, illustrated in Figure 20,
that will be described in more detail in this section.

Memory cell redesign
In [224], a passive fault-tolerant method for

ReRAM-based crossbars is proposed by redesign-
ing the memory cell to have a 2-transistor/2-resistor
(2T2R) structure, where each bit of information
is stored in a differential fashion. In particular, the
pair low resistive state (LRS)/high resistive state
(HRS) means logic value zero, while the pair HRS/
LRS means logic value one. Readout is performed
by comparing the resistance values of the two dif-
ferential devices, thus doubling the memory read
window with regard to the conventional 1T1R cell
architecture shown in Figure 5. This differential
architecture reduces the number of bit errors due
to device variations and limited endurance. Its
benefits are demonstrated on a BNN. This inherent
fault-tolerant architecture has auxiliary advantages.
Weak programming conditions can be applied to
achieve energy savings. It also features outstanding

Figure 20. Proactive hardware-based approaches.

37March/April 2023

endurance opening the way to the possibility of
on-chip training of neural networks.

In [225], a hardened SRAM cell is proposed for
DNN accelerators. Based on the key observation
of sparsity in DNNs (i.e., weights have a strong bias
toward zero) and given that bit flipping from zero to
one is more likely to cause a failure of DNN outputs,
the proposed memory cell provides robust immunity
against node upsets and reduces the leakage current
dramatically when zero is stored in the cell.

Memory aging mitigation
A low-overhead aging mitigation scheme of

weight memory buffers in DNN accelerators is pro-
posed in [232]. The underlying observation is that
optimized aging can be achieved by balancing the
duty cycle of the memory. To this end, a microar-
chitecture is proposed composed of a write data
encoder (WDE) for encoding the weights before
writing them to the on-chip memory, and a read data
decoder (RDD) which performs the inverse function
when reading the data from the on-chip memory
and before passing it to the PEs. The WDE XORes
the incoming weights with a common 1-bit enable
signal that is generated by a true random bit gener-
ator (TRBG), thus adding a sense of randomness to
the bits to be written in the memory. The output of
the TRBG is periodically inverted by XORing it with
a bitstring stored in a register to account for the sce-
nario where the TRBG is biased toward either “0” or
“1.” The RDD performs the same xor operation as
the WDE on the outgoing bits. Results show that this
scheme offers maximum aging mitigation for any
data representation and across different accelerators
and DNN models.

Activation clipping
In [235], it is observed that as the fault rate

increases, the activation of neurons becomes more
intense. In [57], when the activation output of a neu-
ron exceeds by 10% the expected range of values,
it is considered a symptom of an error occurring.
To this end, in [235], it is proposed to use a clipped
version of the activation function such that when
activation exceeds a threshold, then the neuron is
silenced. A search algorithm using the area under
the curve accuracy versus fault rate as a metric is
proposed to find the optimal threshold that maxi-
mizes classification accuracy under different fault
rates. This strategy is investigated also in [236],

[237], and [238]. In [236], values are truncated to
the maximum value observed in the training set.
While in [235] and [236], activation functions are
bounded globally per layer, in [237], the truncation
value is fine-grained per neuron. In [238], to avoid
the risk of false positives, it is proposed to compute
several single statistics on neurons’ output values,
that is, minimum, maximum, average, and standard
deviation. If at least two different statistics are out of
range, then a fault detection is flagged.

In [81], it is proposed to redesign the maxpool
layer of CNNs so as to halter the fault propagation.
The redesign consists in evaluating if the value of the
max element is higher than a threshold and, if so,
then halt the processing of the frame and move on
to the next frame, or use the second largest element
if it is reasonably small.

Redundancy-based
State-of-the-art AI hardware accelerators for

autonomous driving vehicles employ dual-modular
redundancy (DMR) to ensure safety for the system
[250], [251], which requires substantial hardware
resources.

One idea is to perform selective TMR applied to
the most critical layers instead of a full TMR, which
is inspired by the observation that different layers
have different sensitivity to faults [85], [91], [101],
[104]. Selective TMR is feasible resource-wise, and
the resultant area and power consumption over-
head can be tolerated. Typically, the most critical
output layer is protected with TMR, which is enough
to achieve a high level of fault masking. For deep
networks, the output layer accounts for a small per-
centage of neurons of the whole network, thus the
percentage overhead of applying TMR only to the
output layer scales down.

Redundancy-based fault tolerance can also be
applied at different hierarchy levels, for example,
TMR of critical kernels [77], DMR of critical feature
maps [252], TMR of MSBs in computational blocks
such as adders and multipliers [253], and TMR of
critical neurons [254].

In [255], a redundancy-based fault-tolerance strat-
egy, called hybrid computing architecture (HyCA), is
proposed for the 2-D array of PEs that greatly reduces
the overhead of the classical DMR. The basic idea is
to add a separate set of dot-production processing
units (DPPUs) in parallel to the original computing
array of PEs. HyCA can be utilized to scan the entire

38 IEEE Design&Test

Testability and Dependability of Artificial Intelligence Hardware

2-D array and detect the faulty PEs at runtime, and
recompute all the operations that are mapped to the
faulty PEs, independent of the location of faulty PEs.

Finally, a redundancy-based fault-tolerant strat-
egy based on ensemble learning is proposed in
[256]. Ensemble learning consists of training a set
of independent smaller and weak (i.e., with lower
accuracy) base networks, using different net-
work structures, learning algorithms, and training
data sets. Thereafter, the results are combined, for
instance using voting or averaging, to improve task
performance. The idea is that when one or more
weak networks fail due to a fault, the ensemble of
other networks can still operate reliably.

Hardening against radiation
In general, ionizing radiation, depending on the

energy of the incident particle and the time of expo-
sure, can give rise to transient events or permanent
damage, such as bit-flips, shift in the transistor’s
threshold voltage, and an increase in the leakage
current. Transistor hardening refers to applying
changes in the layout so as to tolerate exposure to
ionizing radiation. In [272], a spiking neuron design
is hardened by redesigning the transistors’ layout
using an enclosed layout transistor (ELT) topology
for the gate. This particular neuron uses a memris-
tive device to implement the memory element, that
is, the membrane, of the neuron. The area overhead

with respect to the original design excluding the
memristive device is 4.51x. However, taking into
account the memristive device, it is argued that
area overhead is negligible because the memristive
device is placed on top of the CMOS subsystem dur-
ing the back-end phase which requires an extensive
area.

Reactive hardware-based approaches
Figure 21 illustrates different reactive hard-

ware-based approaches described in this section,
separating the two underlying mechanisms, namely
fault/error detection and localization and fault/error
mitigation.

Weight shifting
In [226], the weight-shifting fault-recovery mech-

anism is proposed. If an incoming synapse of a neu-
ron is detected faulty, then the loss is compensated
by adapting the weights of other synapses. If a neu-
ron is faulty, then its outgoing synapses are treated
as faulty.

Relearning
In [233], a high-level biologically inspired model

of the cortical structure of the brain is developed
capable of performing feed-forward sensory pro-
cessing and automatic abstraction for visual inputs.
The model is trained using Hebbian learning with

Figure 21. Reactive hardware-based approaches.

39March/April 2023

repeated exposure to input samples. A software ver-
sion of the model is deployed on a GPU for fault-tol-
erant experimentation. The fault model considers
neurons stuck-at faults, that is, neurons that do not fire
when they should (stuck-at-0) or they fire when they
should not (stuck-at-1). Single and multiple fault sce-
narios are studied including spatially distributed and
clustered faults. For stuck-at-0 neurons, the network
is capable of relearning as their functionality is taken
over by neighboring neurons. On the other hand,
stuck-at-1 neurons can severely degrade the perfor-
mance and upon detection are disabled and the net-
work relearns. Detection is performed by interrupting
the operation and recomputing the response of the
winning minicolumn of neurons on two neighboring
minicolumns. A voting scheme is used to determine a
defective minicolumn. This is a form of TMR but uses
the existing redundancy. The model’s accuracy with
relearning shows a graceful degradation to faults and
a large number of faults can be tolerated.

Algorithmic-based fault tolerance
Algorithmic-based fault tolerance (ABFT), orig-

inally proposed in [279], is a low-cost solution for
detecting and correcting abnormal behavior in
matrix–matrix multiplications based on check-
sums. As neural network operation heavily relies on
matrix–matrix multiplications, ABFT finds a natural
application for enabling fault tolerance in AI hard-
ware accelerators with several ABFT schemes being
proposed to date in the literature [81], [239], [240],
[241], [242], [243], [244].

As an example, in [242], the compute underutili-
zation of inference-optimized GPUs is exploited by
evaluating the computing resource bottleneck for
GPU kernels. The metric being used is a compari-
son between the arithmetic intensity of the kernel
(in GPU terminology, a GPU kernel consists of mul-
tiple threads that can be executed in parallel) ver-
sus the compute-to-memory-bandwidth ratio (CMR)
of the GPU. A kernel is compute-bound if the arith-
metic intensity is higher than the CMR; otherwise, it
is memory-bandwidth-bound. For a memory-band-
width-bound kernel (i.e., with low arithmetic
intensity running on a high CMR hardware), there
is an opportunity to leverage the underutilization
of compute units to allow ABFT execution on
unused resources. Motivated by this observation,
a finer-grained ABFT scheme is proposed, referred
to as thread-level ABFT, as illustrated in Figure 22.

Performing ABFT at the thread level can exploit
compute underutilization of bandwidth-bound
kernel to reduce the execution time overhead of
ABFT. Furthermore, an arithmetic-intensity-guided
ABFT is proposed that selects the best ABFT
scheme for each individual layer of the network,
for example, global-level (i.e., kernel-level) ABFT
for compute-bound layers, and thread-level ABFT
for memory-bandwidth-bound layers.

An implementation of ABFT for memristor cross-
bar-array architectures is proposed in [240]. As illus-
trated in Figure 23, a crossbar of size rxbar × cxbar is
partitioned into smaller crossbars of size rt × ct. For
each smaller crossbar, two extra columns are added.
In the first column, the cell in row i computes the
nonweighted checksum Gr(i, 1) = Σct

j=1 G(i,j), where
G(i,j) is the nominal expected conductance value of
the cell in position (i,j) of the crossbar. In the sec-
ond column, the cell in row i computes the weighted
checksum Gr (i, 2) = Σct

j=1 WG(j) • G(i,j), where WG(j) = j.
For each smaller crossbar, M test input vectors are
applied, denoted by Vt(k) = [Vt(k, 1),…, Vt(k, rt)],
where Vt(k, i) = V0 • Wt(k, i), V0 is a unit voltage, and
Wt(k,i) = (f(i))k-1, f(i) = 2i-1, k = 1, … ,M. The outputs of
the two checksum columns for test input k are Os(k,
1) = Σrt

i=1 Vt(k,i) • Gr(i, 1) and Os(k, 2) = Σrt
i=1 Vt(k,i)

• Gr(i, 2). The output of crossbar column j for test
input k is Ot(k,j) = Σrt

i=1 Vt(k, i) • G′(i,j), where G′(i,j) is
the actual conductance value of the cell in the (i,j)
position of the crossbar. Two signatures are defined
for test input k, namely A(k) = (Σct

j=1 Ot(k,j) − Os(k,
1))/Vo = Σct

j=1 Σ
rt
i=1 Wt(k,i) • [G′(i,j) − G(i,j)] and B(k)

= (Σct
j=1 wG(j) Ot(k,j) − Os(k, 2)/V0 = Σct

j=1 Σ
rt
i=1 wG(j) •

Wt(k,i) • [G′(i,j) − G(i,j)]. In fault-free operation, A(k)
= B(k) = 0. Based on the percentage of faulty cells,
the size rt × ct is chosen such that no more than two
faults occur in a small crossbar. In this case, using
M = 4 test inputs, we can perform fault localization
and compute conductance deviations in faulty cells
in both the crossbar and the checksum columns
using the two signatures. In particular, we can write
eight equations with six unknowns, that is, the fault
locations, denoted by (x1 ,y1) and (x2, y2), and the
conductance deviations, denoted by d1 and d2, for
the two faults, and solve the system of equations with
linear algebra.

Fault masking
In [92] and [257], memory bit-flip mitigation

schemes are proposed with no costly fault-tolerant

40 IEEE Design&Test

Testability and Dependability of Artificial Intelligence Hardware

operations relying on the sparsity of data. The
assumption made is that information is available on
which bits are affected, for example, using Razor
shadow latches that can detect faults by monitor-
ing circuit delays [278]. The schemes are based on

masking faulty bits. The two main schemes, namely
word and bit masking, proposed in the case of fixed-
point data representation, are illustrated in Figure 24.
Word masking sets all bits of the corrupted register to
zero. This is equivalent to setting the synapse weight
to zero which intuitively, due to the sparsity of the
network, will have a lesser impact on the accuracy
as opposed to leaving uncorrected a 0 → 1 bit-flip
in a high-order position. Bit masking sets a faulty bit
equal to the sign bit and can tolerate more faults
than word masking. It achieves a similar effect by
rounding the synapse weight toward zero.

In [258], a soft error detection and correction
scheme is proposed for CNNs accelerated on FPGAs.
Fault injection analysis shows that single-event upsets
(SEUs) on PEs are far more consequent than SEUs
occurring in memory. Moreover, SEUs in MSBs are
shown to be far more critical. It is proposed to exe-
cute a self-test of PEs during free cycles motivated by
the fact that the average PE utilization ratio is usually
below 85% during inference. The self-test consists in
exercising the higher bits of multiplexers and adders
in the PE separately, and this traversal overhead can be
easily confined within the free cycle. Temporary error
mitigation is achieved by using a zero setting upon SEU
detection, instead of reconfiguring the PE immediately.

In [259], a fault-tolerant design of the systolic out-
put stationary (OS) DNN architecture is proposed.
Faults in the data path, that is, outputs of PEs, are
detected online and mitigated. A functional online
test approach is proposed where neighboring PEs
are tested separately by applying the same input
(i.e., one PE needs to be taken offline) and check-
ing if their outputs are identical. The fault mitigation
approach is to mask the faulty PE’s output to zero.
As a PE roughly corresponds to a single neuron, per-
forming training with dropout can augment robust-
ness. This fault-tolerant approach shows no latency
in the inference and in terms of area overhead it
requires the addition of three MUXes per PE and an
external comparator for the whole PE array.

In [260], the opportunistic parity (OP) fault mit-
igation technique is proposed for protecting CNN
weights. OP is based on the observation that errors
in the LSBs of the weights can be tolerated. The idea
is to flip the LSB if needed such that the weight has
even parity. Checking the parity code can detect
an odd number of bit flips. Noting that a memory
word can be large and multiple weights can be
stored in one memory word, we can adjust parity

Figure 22. ABFT global and local schemes.

Figure 23. Memristor crossbar checksums.

Figure 24. Word and bit masking error
mitigation techniques.

41March/April 2023

for individual weights or the entire memory word.
When a parity error is detected, the weight values
are replaced with zeros.

Regarding SNNs, with the passive neuron fault
tolerance scheme based on dropout in place, active
neuron fault tolerance in hidden layers needs only
to address neuron saturation (see previous sections)
[91]. A compact online monitor can be used per
neuron to detect this symptom [91]. The monitor,
shown in Figure 25, is based on a small-sized counter
that counts the number of spikes a neuron produces
after every single input spike and has a reset port
connected to the input of the neuron. A saturated
neuron will produce spikes with higher frequency
than usual, causing the counter to overflow before
an incoming spike resets it again. A latch is set when
an overflow happens and an error flag is raised. On
the other hand, in fault-free operation, the neuron
needs to integrate multiple input spikes before it
can produce a spike of its own, hence the counter is
always reset, and the error flag signal stays at zero. If
saturation is detected, the “fault hopping” concept is
proposed as a recovery mechanism [91]. The idea is
to turn a saturated neuron into a dead neuron since
the network can withstand dead neuron faults. This
simplifies the hardware implementation requiring
adding a single extra transistor per neuron. An exam-
ple is shown in Figure 26 where a transistor shown
in red is added to cut off the biasing of the spiking
neuron when the flag signal indicating neuron satu-
ration goes high.

In [261], a run-time soft-error mitigation tech-
nique for SNNs is proposed. A fault criticality anal-
ysis shows that increased weights and neuron
saturation are the only faults that can decrease infer-
ence accuracy. For synaptic faults, it is proposed to
perform weight bounding. In particular, if the weight
is greater than a threshold, then it is replaced with
a predefined value (e.g., zero or maximum weight
value from the nominal SNN). For neuron satura-
tion faults, if the membrane voltage stays above the
threshold for more than two clock cycles, then spike
generation is disabled similar to [91].

ML based
In [265], an ML-based method is proposed to

detect an anomaly in a DNN and mitigate the effect
at run time. The fault model is transient faults in the
form of random single bit-flips in the buffer memo-
ries and data paths of the accelerator. For a given

input, each layer of the DNN provides a set of feature
activations (i.e., the respective neuron output val-
ues). A unified feature activation trace is generated
by concatenating the feature activations of all layers.
Then, a small FFNN, named as error detection and
mitigation network (EDMN), is trained in this feature
space to perform anomaly detection due to critical
bit-flips, as well as to predict and recover the correct
classification result for error mitigation. The training
data is generated by random bit-flip injection simula-
tions recording the feature and classification result.
Furthermore, the small EDMN can be safeguarded
against faults by using classic methods, for example,
TMR.

Neuron adaptation
An application-specific fault-tolerant design of

an SNN implemented in an FPGA in proposed in
[269]. The SNN is used to control the motion of a
robotic car, that is, speed and direction, establish-
ing an obstacle avoidance task. There are four motor
neurons controlling the forward (F), right (R), left
(L), and reverse (REV) movements. The neuron’s
excitatory synapse receives input current according
to the obstacle distance. Prioritization is achieved

Figure 25. Symptom detector for a spiking neuron.

Figure 26. Spiking neuron design with cut-off
transistor enabled when the neuron starts saturating
raising the flag signal high.

42 IEEE Design&Test

Testability and Dependability of Artificial Intelligence Hardware

via the inhibitory synapses. The neuron’s spiking
rate detects the activity of the corresponding motor,
that is, F, R, L, or REV. Fault tolerance is achieved
by using many synapses instead of one receiving the
same input. The neuron monitors the total injected
current from all synapses during a time window, and
if an abrupt or abnormal variation is noticed, then
this points to a fault occurring in one or more syn-
apses. Fault tolerance in this context means retain-
ing the same firing rate. This is achieved with one
of two mechanisms: 1) adjust the neuron’s threshold
and 2) adjust the operating frequency of the neuron.
Mechanism 2) is achieved via the dynamic partial
reconfiguration feature of the FPGA that provides a
way to generate custom clocks on-the-fly. The adjust-
ment scheme is not continuous, but it is based on
a lookup table (LUT) for given expected-erroneous
pairs of input currents.

Cross-layer approaches
Figure 27 illustrates together different cross-layer

hardware-based approaches that will be described
in detail in this section.

Model/hardware codesign
In [227], a method is proposed to maintain DNN

accuracy under high error rates by suppressing the
numerical contributions of anomalous activation. It

first integrates anomaly detection and suppression
layers into DNN models. To address the training
challenges due to the discontinuous nature of these
layers, a two-stage training process is proposed to
ensure a fast convergence with competitive accu-
racy. A hardware module is proposed to perform
anomaly detection and suppression at the inference
phase of the DNN accelerator.

In [228], a median feature selection technique
is introduced to alleviate the impact of bit errors
before the numerical operation of each layer. It is
observed that the critical bit errors are often those
leading to a significant numerical increase in the
activation or weight magnitude. Such errors exhibit
characteristics similar to the spike noise patterns in
the image-processing field, where order-statistics fil-
ters have been proven to be effective against large
spike noises. Therefore, DNN models are first trained
with integrated median filters. After achieving the
desired accuracy in training, the model is deployed
on the AI accelerator with dedicated hardware per-
forming median filtering operations.

Fault-aware pruning with retraining
In [95], a fault-tolerant scheme is proposed for

systolic array-based DNN accelerators, depicted in
Figure 28. In the first step, the scheme includes fault-
aware pruning where the faulty MAC is bypassed

Figure 27. Cross-layer hardware-based approaches.

43March/April 2023

using multiplexing, which is equivalent to setting the
MAC’s weight to zero. In the second step, the pruned
systolic array is retrained. It is demonstrated that this
fault tolerance scheme can maintain a classification
accuracy close to the baseline even when up to half
of the MAC units are faulty. It is also demonstrated
that with the fault-tolerant scheme in place, more
aggressive voltage under-scaling can be employed
to provide energy savings while not sacrificing clas-
sification accuracy.

Fault-aware mapping
In [245], the underlying hypothesis is that neu-

rons with strong contributions have a high impact
on the inference accuracy if they are faulty, thus a
strong contribution implies low error resiliency. To
derive the ranking, an algorithm is proposed based
on the Taylor decomposition of the network and lay-
er-wise propagation of the contribution. The average
contribution is considered taking the mean over the
training set. Thereafter, it is proposed to design an
accelerator to have a number of protected PEs and
memory buffers, where protected means that they
are safeguarded against faults by utilizing spatial or
temporal redundancy and error correction mecha-
nisms. The neurons with the lower error resiliency
are mapped to protected elements, whereas neu-
rons with the highest error resiliency are mapped to
unprotected and unreliable elements.

In the case of overlay architectures that consist of an
array of PEs on which layers or a portion of layers are
scheduled to be executed in sequence, whenever a sin-
gle PE is faulty, this affects multiple outputs both within
a layer or among layers. Thus, the portion of the neural
network affected by the corrupted PEs depends on the
scheduling. One zero-overhead approach, therefore,
would be to identify and utilize the optimal scheduling
that minimizes the accuracy drop [101].

In [246], first, the faulty PEs are pruned after test-
ing, similar to [95]. Given the saliency of the weights,
it is proposed to map neurons of a layer on different
segments of the hardware such that the sum of the
saliency of the weights that are mapped on pruned
PEs during inference is minimized.

In [247], it is proposed to first identify the most
critical neurons and then determine an optimal
scheduling that distributes evenly the critical neu-
rons to the available PEs such that if a PE exhibits a
fault this affects the functionality of a limited number
of neurons.

In [248], it is proposed to first derive the memory
fault map using testing and then apply a fault-aware
mapping consisting of bit shuffling to prioritize plac-
ing the MSBs on the nonfaulty memory cells. This
strategy is also investigated in [249].

Variation-aware mapping for memristor cross-
bar arrays

Line resistances degrade the voltage levels along
the crossbar columns, thereby inducing more errors
at the columns away from the drivers. In [262], it is
proposed to rank the DNN kernels based on sensi-
tivity analysis and rearrange the columns such that
the most sensitive kernels are mapped closer to the
drivers.

In [263], it is shown with circuit simulations that
a memristor crossbar presents a current imbalance,
that is, asymmetry in the current propagating through
its different memristors. This current instability is due
to the parasitic components on the horizontal and
vertical wires of the crossbar that result in voltage
drops. For example, the current on the largest path
from a presynaptic neuron to a postsynaptic neuron,
that is, the path that traverses the top horizontal line
through the upper right memristor and down the far
right vertical line, is smaller compared to the current
on the smallest path, that is, the path that includes
only the bottom left memristor. This current varia-
tion results in endurance variability of memristors
in the crossbar, where endurance is defined as the
ratio of average failure time and switching activity.
For example, the memristor in the upper right cor-
ner will have higher endurance, whereas the mem-
ristor in the bottom left corner will have the lowest

Figure 28. Fault-aware pruning followed by retraining.

44 IEEE Design&Test

Testability and Dependability of Artificial Intelligence Hardware

endurance. Based on this observation, the eSpine
framework is proposed for endurance-aware map-
ping of SNNs to neuromorphic hardware. Given the
SNN workload, the objective of eSpine is to find an
intelligent mapping of neurons and synapses to neu-
romorphic hardware, such that synapses with high
activation are implemented on memristors with high
endurance and vice versa.

Adaptive training after testing
In [266], a methodology is proposed, named

memory adaptive training with in-situ canaries
(MATIC), aiming at aggressive voltage scaling of
weight SRAMs in AI hardware accelerators obtain-
ing significant energy savings, while maintaining
the inference accuracy. The idea is to perform read-
after-write and read-after-read operations on each
SRAM address of the chip, to generate a profile or
failure map of the marginal, failure-prone bit cells.
Then memory adaptive training is performed where
the profiled bit errors are injected into the training
process enabling the DNN to compensate via learn-
ing. In this way, during normal operation, by apply-
ing voltage scaling, a significant fraction of resultant
bit errors is passively tolerated. Furthermore, tuna-
ble accuracy-energy tradeoffs can be achieved by
using a select set of bit cells that are on the margin of
read failure as a canary. The canaries are replicated
critical bit cells that can detect imminent failures.
Such in-situ canary bits can be polled at run-time to
determine whether voltage modifications should be
applied to maintain an advantageous accuracy-en-
ergy tradeoff.

In [146], periodical online testing is performed
using a functional test set of adversarial examples.
If the network is found faulty, memory fault diag-
nosis is performed using a march test. If a soft fault
has occurred, the remedy is to refresh the memory
with a model backup stored in the edge device.
If the fault is permanent, the fault map is sent to
the cloud for model retraining after masking the
faults, and afterward, the model is retransmitted to
the edge device.

Aging-aware online training of memristor
crossbar arrays

The writing endurance of memristor cells ranges
from 106 to 108 write operations, whereas the training
phase can take 105–107 iterations. Therefore, online
training in memristor crossbar-based accelerators

causes degradation of the valid resistance range of
the memristor, an effect called aging in the mem-
ristor, resulting in most memristor cells becoming
faulty. In [270] and [271], frameworks are proposed
combining software training and hardware tuning
to counter the aging effect. For example, in [270],
first, the threshold training method is introduced to
reduce the number of write operations in each iter-
ation. The observation is that for the vast majority of
weights, the weight update is very small. In this case,
the weight update is suppressed. Second, after a
fixed number of iterations, a fault detection method
is executed to detect stuck-at faults and update the
status of cells. The method, called quiescent-voltage
comparison, consists of the following steps: 1) divide
the crossbar into smaller crossbars; 2) for each cross-
bar, perform a write operation with the same write
change to every cell; and 3) compare the actual
crossbar outputs to the expected reference output
and if a discrepancy is found, then it means that at
least one cell in the selected crossbar is stuck-at and
cannot be updated when we write an increment. By
using a smaller crossbar size, we increase fault detec-
tion accuracy at the expense of higher test time. After
fault detection, the third method exploits the fact
that over half of the weights are zero. The idea is to
map zero weights to cells that have stuck-at-0 faults.
This can be achieved by reordering the column and
rows of the weight matrix. To do this efficiently while
respecting the inherent connection of cascaded lay-
ers, it is proposed to reorder only the neurons.

Thermal-aware optimization of memristor
crossbar arrays

Temperature increase changes the conductance
value of a memristor cell and decreases its endur-
ance. In [273], [274], and [275], thermal-aware train-
ing and online optimization schemes are proposed
to resolve the temperature-dependent retention
issues of memristors with one-time DNN deployment.

Perspectives

Fault criticality assessment
The lesson learned from published fault injec-

tion experiments is that not all faults are equal.
Most end up being benign, that is, they are masked,
their effect on the output is not large enough
to result in accuracy loss, or the accuracy loss is
insignificant. On the other hand, there are some

45March/April 2023

suspect critical faults, for example, 0→1 bit flips in
high-order bit positions, stuck-at-1 artificial neuron
activations, saturated spiking neurons, and faults in
the last layers, especially in the output layer. Yet,
the locations of critical faults cannot be safely pre-
sumed and depend on many factors, such as the
network architecture (e.g., depth, number of chan-
nels, etc.), the sparsity of the network (e.g., percent-
age of near-zero weights), and the cognitive task
(e.g., data set). Given that the fault space explodes
for deep networks, to speed up reliability analysis
one of the main challenges is reducing safely the
fault space aiming at circumventing simulation of
faults that would prove to be benign. For example,
we can use ML to predict fault criticality and block
the simulation unless a fault has some likelihood
of being critical. This will allow for avoiding specu-
lative and unguided fault sampling and evaluating
more faults, thus identifying with higher probability
the critical faults that will need to be dealt with fault
tolerance techniques. Identifying the critical faults
will allow better targeting the fault tolerance strate-
gies and reducing test costs.

Along this direction, we require faster automated
fault injection frameworks. More “tricks” to speed
up simulation can be integrated into current frame-
works. For example, as every layer is computed
sequentially, if a fault is masked in an intermediate
layer, then simulation can be stopped early. Or, for
a fault in a given layer, we can start the simulation
from this layer considering the golden fault-free
response of the previous layer.

A second main challenge is developing fault mod-
els for higher-level descriptions of the accelerator
such that they are plausible in hardware and cap-
ture well-foreseen hardware-level faults. Many works
consider faults at an abstract behavioral level that do
not necessarily map to hardware or their probability
of occurrence from a hardware point of view is very
small. Most fault injection experiments consider a sub-
set of possible faults or a subset of the subblocks of
an accelerator. Fault injection experiments on actual
hardware or radiation experiments can shed more light
on the impact of faults but ideally, the impact should
be assessed earlier at the design stage so as to add the
necessary provisions on-chip for fault tolerance.

Testability
As discussed above, a plethora of new testability

features and methodologies have been proposed in

the literature and adopted in practical AI hardware
accelerator designs. However, moving forward,
there is still a pressing need for novel DFT solutions
to target existing and upcoming challenges. We have
seen various demands emerging on the horizon for
products in the next several years.

First, as part of ordinary ASIC flow, DFT activities
are tightly associated with the design and physical
design in many aspects, such as the turn-around
cycle, physical design tools, methodologies, and
even computing resources. Since many of today’s
large AI hardware accelerator designs are indeed
challenging the design and physical design limita-
tions, posing direct threats to project delivery, suc-
cessful DFT solutions should recognize and attempt
to help mitigate these threats. For example, large
AI hardware accelerator designs usually cannot be
readily fit into existing computing resources (i.e.,
servers, emulators, etc.), hence design needs to be
sliced into multiple modes and multiple partitions.
Without a feasible solution, the number of modes
and partitions may quickly get out of control and
computing resources will soon be depleted. In many
cases, DFT verification may demand even more
resources than function verification. Existing tools
provide basic help, yet a major function and DFT
verification framework still have to be handcrafted
to ensure resource availability and design space
coverage. On the physical design side, many issues
have been addressed in earlier sections and current
DFT tools have had a strong focus on solving these
problems. However, major challenges continue to
bother the DFT owners, such as timing budget, PPA
request, signal routability, performance correlation,
and so on, not only in large AI hardware accelera-
tor designs for cloud utilization, but also in smaller
designs used in edge devices, which are extremely
sensitive to power and area. As such, DFT architects
have to be well versed in all stages of the design flow
and ensure their customized DFT architecture and
flow can accommodate the design and physical
design requirements to meet the target of PPA and
time-to-market.

Second, new AI hardware accelerator architec-
tures may require the advances of novel DFT archi-
tectures, algorithms, or models, needless to mention
the exotic neuromorphic and in-memory computing
hardware, which have spurred research on many
new DFT architectures and fault models. Even the
traditional style of design may encounter a much

46 IEEE Design&Test

Testability and Dependability of Artificial Intelligence Hardware

higher level of challenges than before. For exam-
ple, as mentioned earlier, DFT for large AI hardware
accelerator designs needs to be multimode and
multipartition in design and verification spaces.
This may incur an excessive number of test patterns,
causing ATE memory overflow or unaccepted test
expenses. This is not a new problem, but exacer-
bated in AI hardware accelerators. Since there are
no readily adopted solutions, DFT architects need
to be creative in designing some on-chip hardware
for a low-cost test. On the other side, problems rarely
seen before may emerge as the new norm. For exam-
ple, some AI hardware accelerator architectures
feature unique logic that is not ATPG-friendly, for
example, a very deep logic depth at postsynthesis
requesting very high coverage. Traditional test point
insertion may lead to unacceptable performance
or area penalty. To handle such issues, upgrades
in ATPG algorithms or DFT architecture may be
needed. Moreover, the extensive use of large-sized
SRAMs at advanced tech-nodes may see new types
of memory faults, and MBIST algorithms may need
to be updated too.

In addition, as already a trend in traditional
design, efficient and effective DFT activities need
to be both left-shift and right-shift. Left-shift refers
to the DFT involvement in early design stages, for
example, DFT flow starts with design architecting
and floor-planning, most DFT implementations
are done at the RTL stage, and so on. Right-shift
refers to the DFT activities extending well into or
even beyond postsilicon stages such as bring up,
diagnosis, volume production, and in-field debug,
so that the entire product life-cycle quality can
be ensured. Since most AI hardware accelera-
tor designs are domain-specific with a very tight
schedule, left-shift can help shrink the design cycle
and meet the time-to-market target. Meanwhile,
the new AI hardware accelerator architectures or
components are usually not fully proved over their
service time, thus a right-shift strategy is crucial to
fully capture silicon characterization and product
behavior over its life cycle. This learning is par-
ticularly important for mission-critical products
such as automobiles and data centers, where reli-
ability is of top concern and in-field tests may be
dictated. From the DFT perspective, such designs
not only require a complete solution from the reg-
ular scan, MBIST, I/O test, to online test, but also
a close correlation between the test and function

operation to ensure a high-quality product. This
goal may be as challenging as the design itself.

Finally, as Moore’s law slows down, 3-D IC has
been proposed as a major solution to performance
gain, cost reduction, and shrink of form factor. While
traditional interposer-based 2.5-D solutions connect
dies horizontally and have been widely adopted,
3-D designs stack dies in the vertical dimension and
currently have focused mostly on external memories
such as HBM. Tests for 3-D IC with memory dies have
seen major advances in addressing several chal-
lenges. First, faults on through-silicon vias (TSV) and
memories have to be tested. Second, these faults
need diagnosis solutions for repair and quick yield
ramp-up. Finally, an at-speed self-test is needed to
reduce cost and ensure fault coverage. Moving for-
ward, as stacked logic die becomes widely adopted,
the test, diagnosis, and repair of interconnects
between dies and test access of stacked dies seem to
be the next challenge.

Dependability
From the perspective of AI hardware and sys-

tem dependability, one fundamental challenge
is on specifiability of AI-based functionality. The
traditional dependability assurance, for example,
safety assurance required by standards such as
ISO 26262 or IEC 61508, is based on the assump-
tion that there exists a full specification of the tar-
geted functionality. These specifications are then
used to guide risk analysis, dependability (e.g.,
safety) management, concept development, and
validation activities. The full specification assump-
tion holds valid for most traditional rule-based
programmed approaches. On the other hand,
AI-based functionality may not be fully specifi-
able. For example, the functionality of object
recognition in autonomous driving applications
can only partially be specified using rules. While
the lack of full specification is exactly one basic
driving factor of employing data-driven AI meth-
ods in these application domains, it creates a big
challenge to dependability assurance, especially
under the existing framework.

AI specifiability challenge is also related to its
interpretability challenge, especially for DNNs.
While there is a significant research effort on
“Explainable AI,” many advanced DNN models have
hitherto remained noninterpretable. This character-
istic of an AI-based system becomes an obstacle to

47March/April 2023

directly applying traditional white-box verification
and testing methods, which are common in tradi-
tional dependability assurance practices. As we
have surveyed, most works in AI hardware depend-
ability focus on fault tolerance techniques. While
fault tolerance is an important means to mitigate
dependability issues, verification and testing are
vital components to meet the assurance require-
ments, especially from a standard compliance per-
spective (e.g., to meet ASIL requirements defined in
ISO 26262). Existing FuSa standards, for example,
ISO26262 and ISO21448, do not explicitly address
the specific characteristics of the AI system. Lack of
both specifiability and interpretability renders the
challenges of applying a traditional ISO26262 style
approach to AI systems, unless these obstacles are
removed, or a new alternative approach is taken.

One outstanding challenge is how to define effi-
ciently measurable metrics for the evaluation of the
dependability of AI hardware and systems, both
online and offline. Most of the recent work we have
surveyed are based on DNN models, and the met-
rics used for dependability evaluation are primarily
based on prediction accuracy. While this metric is
suitable for offline analysis with ground-truth info
available (e.g., fault criticality analysis), it is chal-
lenging to use the accuracy metric during online
dependability management where real-time assess-
ment is needed and often ground truth may not exist.
For these types of applications, an alternative metric
may be needed to quickly assess the dependability
state of AI hardware and system.

Also, currently, most research has been focused
on supervised learning for DNNs. There are other
paradigms of AI/ML, including unsupervised learn-
ing and reinforcement learning. The dependability
of AI hardware for these paradigms is still underex-
plored. Moreover, there is an emerging end-to-end
DNN approach (e.g., DNN is trained to infer the
control directly from sensor data inputs) in many AI
application domains. How to define the appropriate
metrics for such an approach remains a challenge.

Fault prevention and fault tolerance are cur-
rent focus areas of the AI hardware dependability
research field, as witnessed by this survey. Fault pre-
diction may start attracting more attention in some
dependability-critical applications, where proactive
management is much desired. A growing interest is
calling for more research in this direction. For exam-
ple, applying an AI approach to fault prediction of

AI hardware may be a good example of creating a
virtuous cycle of “AI for AI.”

Finally, from an AI hardware perspective, some AI
hardware architectures are highly specified for train-
ing, while others target optimization for inference
workload. While most recent dependability studies
focus on inference AI hardware, the dependabil-
ity assurance of AI hardware used for training also
deserves attention, especially with the edge comput-
ing and federated learning paradigms where training
is moved from cloud to edge devices.

in this Article, we presented a systematic sur-
vey on state-of-the-art research and development
of AI hardware testability and dependability. With
the emergence of more hardware innovations to
address AI computing challenges, testability and
dependability challenges of AI hardware should
be addressed to meet both manufacturing quality
and in-field service assurance requirements. This
article covers the research of this new field, which
has rapidly been evolving especially over the past
few years. Although much work has been done, in
the future many open challenges remain, including
fault criticality assessment with dramatically explod-
ing fault space, hardware-aware fault modeling at
the high abstraction level, practical DFT for large-
scale designs and 3-D/2.5-D advanced packaging,
dependability verification and validation with the
limited specifiability and interpretability of AI mod-
els, efficient metrics for in-field real-time dependabil-
ity evaluation, and so on. To address these existing
and upcoming challenges, continuous advances of
innovations from both industry and academia are
expected over the next years.

Acknowledgments
The work of Haralampos-G. Stratigopoulos was

supported by the ANR RE-TRUSTING Project under
Grant ANR-21-CE24-0015-03.

 References
 [1] I. Goodfellow, Y. Bengio, and A. Courville, Deep

Learning. Cambridge, MA, USA: MIT Press, 2016.

 [2] W. A. Wulf and S. A. McKee, “Hitting the memory wall:

Implications of the obvious,” ACM SIGARCH Comput.

Archit. News, vol. 23, no. 1, pp. 20–24, Mar. 1995.

 [3] V. Sze et al., “Efficient processing of deep neural

networks: A tutorial and survey,” Proc. IEEE, vol. 105,

no. 12, pp. 2295–2329, Dec. 2017.

48 IEEE Design&Test

Testability and Dependability of Artificial Intelligence Hardware

 [4] A. Reuther et al., “Survey and benchmarking of machine

learning accelerators,” in Proc. IEEE High Perform.

Extreme Comput. Conf. (HPEC), Sep. 2019, pp. 1–9.

 [5] M. Bouvier et al., “Spiking neural networks hardware

implementations and challenges: A survey,” ACM

J. Emerg. Technol. Comput. Syst., vol. 15, no. 2, pp.

1–35, Apr. 2019.

 [6] Y. Chen et al., “A survey of accelerator architectures

for deep neural networks,” Engineering, vol. 6, no. 3,

pp. 264–274, Mar. 2020.

 [7] B. L. Deng et al., “Model compression and hardware

acceleration for neural networks: A comprehensive

survey,” Proc. IEEE, vol. 108, no. 4, pp. 485–532,

Apr. 2020.

 [8] M. Capra et al., “An updated survey of efficient

hardware architectures for accelerating deep

convolutional neural networks,” Future Internet, vol.

12, no. 7, p. 113, Jul. 2020.

 [9] S. Bavikadi et al., “A survey on machine learning

accelerators and evolutionary hardware platforms,”

IEEE Design Test, vol. 39, no. 3, pp. 91–116, Jun. 2022.

 [10] M. Shafique et al., “An overview of next-generation

architectures for machine learning: Roadmap,

opportunities and challenges in the IoT era,” in Proc.

Design, Autom. Test Eur. Conf. Exhibit. (DATE), Mar.

2018, pp. 827–832.

 [11] M. Costandi, Neuroplasticity. Cambridge, MA, USA:

MIT Press, 2016.

 [12] S. Dave et al., “Special session: Towards an agile

design methodology for efficient, reliable, and secure

ML systems,” in Proc. IEEE 40th VLSI Test Symp.

(VTS), Apr. 2022, pp. 1–14.

 [13] Y. LeCun et al., “Gradient-based learning applied to

document recognition,” Proc. IEEE, vol. 86, no. 11,

pp. 2278–2324, Nov. 1998.

 [14] S. Hochreiter and J. Schmidhuber, “Long short-term

memory,” Neural Comput., vol. 9, no. 8, pp. 1735–

1780, Nov. 1997.

 [15] W. Maass, “Networks of spiking neurons: The third

generation of neural network models,” Neural Netw.,

vol. 10, no. 9, pp. 1659–1671, Dec. 1997.

 [16] C. Mead, Analog VLSI and Neural Systems. Reading,

MA, USA: Addison-Wesley, 1989.

 [17] G. Indiveri et al., “Neuromorphic silicon neuron circuits,”

Frontiers Neurosci., vol. 5, May 2011, Art. no. 73.

 [18] M. Pfeiffer and T. Pfeil, “Deep learning with spiking

neurons: Opportunities and challenges,” Frontiers

Neurosci., vol. 12, Oct. 2018, Art. no. 774.

 [19] L. Camuñas-Mesa, B. Linares-Barranco, and T.

Serrano-Gotarredona, “Neuromorphic spiking neural

networks and their memristor-CMOS hardware

implementations,” Materials, vol. 12, no. 17, Aug. 2019,

Art. no. 2745.

 [20] M. Valle, “Analog VLSI implementation of artificial

neural networks with supervised on-chip learning,”

Analog Integr. Circuits Signal Process., vol. 33, pp.

263–287, Dec. 2002.

 [21] S.-C. Liu et al., Event-Based Neuromorphic Systems.

Hoboken, NJ, USA: Wiley, 2014.

 [22] B. Chatterjee et al., “Exploiting inherent error

resiliency of deep neural networks to achieve extreme

energy efficiency through mixed-signal neurons,” IEEE

Trans. Very Large Scale Integr. (VLSI) Syst., vol. 27,

no. 6, pp. 1365–1377, Jun. 2019.

 [23] A. Rubino et al., “Ultra-low-power FDSOI neural

circuits for extreme-edge neuromorphic intelligence,”

IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 68, no. 1,

pp. 45–56, Jan. 2021.

 [24] Z. Du et al., “Leveraging the error resilience of neural

networks for designing highly energy efficient

accelerators,” IEEE Trans. Comput.-Aided Design Integr.

Circuits Syst., vol. 34, no. 8, pp. 1223–1235, Aug. 2015.

 [25] S. Gupta et al., “Deep learning with limited numerical

precision,” in Proc. Int. Conf. Mach. Learn. (ICML), Jul.

2015, pp. 1737–1746.

 [26] M. Courbariaux et al., “Binarized neural networks:

Training deep neural networks with weights and

activations constrained to +1 or -1,” Mar. 2016,

arXiv:1602.02830.

 [27] M. Rastegari et al., “XNOR-Net: ImageNet

classification using binary convolutional neural

networks,” Aug. 2016, arXiv:1603.05279.

 [28] T. P. Xiao et al., “Analog architectures for neural network

acceleration based on non-volatile memory,” Appl. Phys.

Rev., vol. 7, no. 3, Sep. 2020, Art. no. 031301.

 [29] A. Ankit et al., “Circuits and architectures for in-

memory computing-based machine learning

accelerators,” IEEE Micro, vol. 40, no. 6, pp. 8–22,

Nov./Dec. 2020.

 [30] S. Yu, “Neuro-inspired computing with emerging

nonvolatile memories,” Proc. IEEE, vol. 106, no. 2,

pp. 260–285, Feb. 2018.

 [31] B. Belhadj et al., “The improbable but highly

appropriate marriage of 3D stacking and neuromorphic

accelerators,” in Proc. Int. Conf. Compil., Archit. Synth.

Embedded Syst. (CASES), Oct. 2014, pp. 1–9.

 [32] D. Kim et al., “Neurocube: A programmable digital

neuromorphic architecture with high-density 3D

memory,” in Proc. ACM/IEEE 43rd Annu. Int. Symp.

Comput. Archit. (ISCA), Jun. 2016, pp. 380–392.

49March/April 2023

 [33] S. Moradi et al., “A scalable multicore architecture

with heterogeneous memory structures for dynamic

neuromorphic asynchronous processors (DYNAPs),”

IEEE Trans. Biomed. Circuits Syst., vol. 12, no. 1,

pp. 106–122, Feb. 2018.

 [34] J. Schemmel et al., “A wafer-scale neuromorphic

hardware system for large-scale neural modeling,” in

Proc. IEEE Int. Symp. Circuits Syst., May/Jun. 2010,

pp. 1947–1950.

 [35] B. V. Benjamin et al., “Neurogrid: A mixed-analog-digital

multichip system for large-scale neural simulations,”

Proc. IEEE, vol. 102, no. 5, pp. 699–716, May 2014.

 [36] A. Valentian et al., “Fully integrated spiking neural

network with analog neurons and RRAM synapses,”

in IEDM Tech. Dig., Dec. 2019, pp. 14.3.1–14.3.4.

 [37] G. K. Chen et al., “A 4096-neuron 1M-synapse

3.8-pJ/SOP spiking neural network with on-chip

STDP learning and sparse weights in 10-nm FinFET

CMOS,” IEEE J. Solid-State Circuits, vol. 54, no. 4,

pp. 992–1002, Apr. 2019.

 [38] C. Frenkel et al., “A 0.086-mm2 12.7-pJ/SOP

64k-synapse 256-neuron online-learning digital

spiking neuromorphic processor in 28-nm CMOS,”

IEEE Trans. Biomed. Circuits Syst., vol. 13, no. 1, pp.

145–158, Feb. 2019.

 [39] S. B. Furber et al., “The SpiNNaker project,” Proc.

IEEE, vol. 102, no. 5, pp. 652–665, May 2014.

 [40] P. A. Merolla et al., “A million spiking-neuron integrated

circuit with a scalable communication network and

interface,” Science, vol. 345, no. 6197, pp. 668–673,

Aug. 2014.

 [41] M. Davies et al., “Loihi: A neuromorphic manycore

processor with on-chip learning,” IEEE Micro, vol. 38,

no. 1, pp. 82–99, Jan./Feb. 2018.

 [42] H. Mostafa et al., “Fast classification using sparsely

active spiking networks,” in Proc. IEEE Int. Symp.

Circuits Syst. (ISCAS), May 2017, pp. 1–4.

 [43] L. A. Camuñas-Mesa et al., “A configurable event-

driven convolutional node with rate saturation

mechanism for modular ConvNet systems

implementation,” Frontiers Neurosci., vol. 12, Feb.

2018, Art. no. 63.

 [44] D. Bankman et al., “An always-on 3.8 µJ/86%

CIFAR-10 mixed-signal binary CNN processor with all

memory on chip in 28-nm CMOS,” IEEE J. Solid-State

Circuits, vol. 54, no. 1, pp. 158–172, Jan. 2019.

 [45] J. Zhang, Z. Wang, and N. Verma, “In-memory

computation of a machine-learning classifier in a

standard 6T SRAM array,” IEEE J. Solid-State Circuits,

vol. 52, no. 4, pp. 915–924, Apr. 2017.

 [46] C. Eckert et al., “Neural cache: Bit-serial in-cache

acceleration of deep neural networks,” in Proc. ACM/

IEEE 45th Annu. Int. Symp. Comput. Archit. (ISCA),

Jun. 2018, pp. 383–396.

 [47] P. Chi et al., “PRIME: A novel processing-in-memory

architecture for neural network computation in

ReRAM-based main memory,” in Proc. ACM/IEEE

43rd Annu. Int. Symp. Comput. Archit. (ISCA), Jun.

2016, pp. 27–39.

 [48] A. Shafiee et al., “ISAAC: A convolutional neural

network accelerator with in-situ analog arithmetic

in crossbars,” in Proc. ACM/IEEE 43rd Annu.

Int. Symp. Comput. Archit. (ISCA), Jun. 2016,

pp. 14–26.

 [49] L. Song et al., “PipeLayer: A pipelined ReRAM-based

accelerator for deep learning,” in Proc. IEEE Int. Symp.

High Perform. Comput. Archit. (HPCA), Feb. 2017,

pp. 541–552.

 [50] C.-X. Xue et al., “A CMOS-integrated compute-in-

memory macro based on resistive random-access

memory for AI edge devices,” Nature Electron., vol. 4,

no. 1, pp. 81–90, Dec. 2020.

 [51] N. Nassif et al., “Sapphire rapids: The next-generation

Intel Xeon scalable processor,” in IEEE Int. Solid-State

Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2022,

pp. 44–46.

 [52] Y. Chen et al., “Diannao family: Energy-efficient

hardware accelerators for machine learning,”

Commun. ACM, vol. 59, no. 11, pp. 105–112,

Nov. 2016.

 [53] Y. Chen et al., “Eyeriss: An energy-efficient

reconfigurable accelerator for deep convolutional

neural networks,” IEEE J. Solid-State Circuits, vol. 52,

no. 1, pp. 127–138, Jan. 2017.

 [54] N. P. Jouppi et al., “In-datacenter performance

analysis of a tensor processing unit,” in Proc. ACM/

IEEE Annu. Int. Symp. Comput. Archit. (ISCA), Jun.

2017, pp. 1–12.

 [55] C. Farabet et al., “CNP: An FPGA-based processor

for convolutional networks,” in Proc. Int. Conf. Field

Program. Log. Appl., Aug./Sep. 2009, pp. 32–37.

 [56] Y. Umuroglu et al., “FINN: A framework for fast,

scalable binarized neural network inference,” in Proc.

ACM/SIGDA Int. Symp. Field-Program. Gate Arrays,

Feb. 2017, pp. 65–74.

 [57] G. Li et al., “Understanding error propagation in

deep learning neural network (DNN) accelerators

and applications,” in Proc. Int. Conf. High Perform.

Comput., Netw., Storage Anal., Nov. 2017,

pp. 1–12.

50 IEEE Design&Test

Testability and Dependability of Artificial Intelligence Hardware

 [58] E. M. E. Mhamdi and R. Guerraoui, “When neurons

fail,” in Proc. IEEE Int. Parallel Distrib. Process. Symp.

(IPDPS), May/Jun. 2017, pp. 1028–1037.

 [59] F. H. Bahnsen, V. Klebe, and G. Fey, “Effect analysis

of low-level hardware faults on neural networks

using emulated inference,” in Proc. 10th Int.

Conf. Modern Circuits Syst. Technol. (MOCAST),

Jul. 2021, pp. 1–6.

 [60] D. Maliuk et al., “Analog neural network design for RF

built-in self-test,” in Proc. IEEE Int. Test Conf. (ITC),

Nov. 2010, pp. 1–10, Paper 23.2.

 [61] C. H. Sequin and R. D. Clay, “Fault tolerance in

artificial neural networks,” in Proc. Int. Joint Conf.

Neural Netw. (IJCNN), vol. 1, Jun. 1990, pp. 703–708.

 [62] G. Bolt, “Fault models for artificial neural networks,” in

Proc. Int. Joint Conf. Neural Netw. (IJCNN), vol. 2, Nov.

1991, pp. 1373–1378.

 [63] P. Chandra and Y. Singh, “Fault tolerance of

feedforward artificial neural networks—A framework

of study,” in Proc. Int. Joint Conf. Neural Netw.

(IJCNN), vol. 1, 2003, pp. 489–494.

 [64] D. B. I. Feltham and W. Maly, “Physically realistic fault

models for analog CMOS neural networks,” IEEE J.

Solid-State Circuits, vol. 26, no. 9, pp. 1223–1229,

Sep. 1991.

 [65] A. S. Orgenci, G. Dundar, and S. Balkur, “Fault-

tolerant training of neural networks in the presence

of MOS transistor mismatches,” IEEE Trans. Circuits

Syst. II, Analog Digit. Signal Process., vol. 48, no. 3,

pp. 272–281, Mar. 2001.

 [66] B. Reagen et al., “Ares: A framework for quantifying

the resilience of deep neural networks,” in Proc. 55th

ACM/ESDA/IEEE Design Autom. Conf. (DAC), Jun.

2018, pp. 1–6.

 [67] Y. He, P. Balaprakash, and Y. Li, “FIdelity: Efficient

resilience analysis framework for deep learning

accelerators,” in Proc. 53rd Annu. IEEE/ACM Int. Symp.

Microarchitecture (MICRO), Oct. 2020, pp. 270–281.

 [68] Z. Chen et al., “BinFI: An efficient fault injector for

safety-critical machine learning systems,” in Proc. Int.

Conf. High Perform. Comput., Netw., Storage Anal.,

Nov. 2019, pp. 1–23.

 [69] L. M. Luza et al., “Emulating the effects of radiation-

induced soft-errors for the reliability assessment of

neural networks,” IEEE Trans. Emerg. Topics Comput.,

vol. 10, no. 4, pp. 1867–1882, Oct./Dec. 2022.

 [70] A. P. Arechiga and A. J. Michaels, “The robustness of

modern deep learning architectures against single

event upset errors,” in Proc. High Perform. Extreme

Comput. Conf. (HPEC), Sep. 2018, pp. 1–6.

 [71] M. Sabbagh et al., “Evaluating fault resiliency of

compressed deep neural networks,” in Proc. IEEE

Int. Conf. Embedded Softw. Syst. (ICESS), Jun. 2019,

pp. 1–7.

 [72] A. Bosio et al., “A reliability analysis of a deep neural

network,” in Proc. IEEE Latin Amer. Test Symp. (LATS),

Mar. 2019, pp. 1–6.

 [73] A. Ruospo et al., “Evaluating convolutional neural

networks reliability depending on their data

representation,” in Proc. 23rd Euromicro Conf.

Digit. Syst. Design (DSD), Aug. 2020,

pp. 672–679.

 [74] M. A. Neggaz et al., “Are CNNs reliable enough for

critical applications? An exploratory study,” IEEE

Design Test, vol. 37, no. 2, pp. 76–83, Apr. 2020.

 [75] K. Givaki et al., “On the resilience of deep learning for

reduced-voltage FPGAs,” in Proc. 28th Euromicro Int.

Conf. Parallel, Distrib. Netw.-Based Process. (PDP),

Mar. 2020, pp. 110–117.

 [76] Z. Gao et al., “Reliability evaluation of pruned neural

networks against errors on parameters,” in Proc. IEEE

Int. Symp. Defect Fault Tolerance VLSI Nanotechnol.

Syst. (DFT), Oct. 2020, pp. 1–6.

 [77] Y. Ibrahim et al., “Soft error resilience of deep residual

networks for object recognition,” IEEE Access, vol. 8,

pp. 19490–19503, 2020.

 [78] K. Adam, I. I. Mohd, and Y. M. Younis, “The impact

of the soft errors in convolutional neural network on

GPUs: AlexNet as case study,” Proc. Comput. Sci.,

vol. 182, pp. 89–94, Jan. 2021.

 [79] E. Malekzadeh et al., “The impact of faults on DNNs:

A case study,” in Proc. IEEE Int. Symp. Defect Fault

Tolerance VLSI Nanotechnol. Syst. (DFT), Oct. 2021,

pp. 1–6.

 [80] Z. Wan et al., “Analyzing and improving fault tolerance

of learning-based navigation systems,” in Proc. 58th

ACM/IEEE Design Autom. Conf. (DAC), Dec. 2021,

pp. 841–846.

 [81] F. F. D. Santos et al., “Analyzing and increasing

the reliability of convolutional neural networks on

GPUs,” IEEE Trans. Rel., vol. 68, no. 2, pp. 663–677,

Jun. 2019.

 [82] F. F. D. Santos et al., “Impact of reduced precision

in the reliability of deep neural networks for object

detection,” in Proc. IEEE Eur. Test Symp. (ETS), May

2019, pp. 1–6.

 [83] A. Lotfi et al., “Resiliency of automotive object

detection networks on GPU architectures,” in

Proc. IEEE Int. Test Conf. (ITC), Nov. 2019,

pp. 1–9.

51March/April 2023

 [84] F. F. D. Santos et al., “Characterizing a neutron-

induced fault model for deep neural networks,” IEEE

Trans. Nucl. Sci., early access, Nov. 24, 2022, doi:

10.1109/TNS.2022.3224538.

 [85] F. Libano et al., “Selective hardening for neural

networks in FPGAs,” IEEE Trans. Nucl. Sci., vol. 66,

no. 1, pp. 216–222, Jan. 2019.

 [86] A. Mahmoud et al., “PyTorchFI: A runtime perturbation

tool for DNNs,” in Proc. 50th Annu. IEEE/IFIP Int. Conf.

Dependable Syst. Netw. Workshops (DSN-W), Jun./

Jul. 2020, pp. 25–31.

 [87] Z. Chen et al., “TensorFI: A flexible fault injection

framework for tensorflow applications,” in Proc. IEEE Int.

Symp. Softw. Rel. Eng. (ISSRE), Oct. 2020, pp. 426–435.

 [88] C. Bolchini et al., “Fast and accurate error

simulation for CNNs against soft errors,” IEEE Trans.

Comput., early access, Jun. 17, 2022, doi: 10.1109/

TC.2022.3184274.

 [89] Y. Zhang et al., “Estimating vulnerability of all model

parameters in DNN with a small number of fault

injections,” in Proc. Design, Autom. Test Eur. Conf.

Exhibit. (DATE), Mar. 2022, pp. 60–63.

 [90] C. D. Schuman et al., “Resilience and robustness of

spiking neural networks for neuromorphic systems,” in

Proc. Int. Joint Conf. Neural Netw. (IJCNN), Jul. 2020,

pp. 1–10.

 [91] T. Spyrou et al., “Neuron fault tolerance in spiking

neural networks,” in Proc. Design, Autom. Test Eur.

Conf. Exhibit. (DATE), Feb. 2021, pp. 743–748.

 [92] B. Salami, O. S. Unsal, and A. C. Kestelman,

“On the resilience of RTL NN accelerators: Fault

characterization and mitigation,” in Proc. 30th Int.

Symp. Comput. Archit. High Perform. Comput. (SBAC-

PAD), Sep. 2018, pp. 322–329.

 [93] A. Ruospo et al., “A pipelined multi-level fault injector

for deep neural networks,” in Proc. IEEE Int. Symp.

Defect Fault Tolerance VLSI Nanotechnol. Syst. (DFT),

Oct. 2020, pp. 1–6.

 [94] J. E. R. Condia et al., “Combining architectural

simulation and software fault injection for a fast and

accurate CNNs reliability evaluation on GPUs,” in Proc.

IEEE 39th VLSI Test Symp. (VTS), Apr. 2021, pp. 1–7.

 [95] J. J. Zhang, K. Basu, and S. Garg, “Fault-tolerant

systolic array based accelerators for deep neural

network execution,” IEEE Design Test, vol. 36, no. 5,

pp. 44–53, Oct. 2019.

 [96] J. Deng et al., “Retraining-based timing error

mitigation for hardware neural networks,” in Proc.

Design, Autom. Test Eur. Conf. Exhibit. (DATE), 2015,

pp. 593–596.

 [97] A. Chaudhuri et al., “Fault-criticality assessment for

AI accelerators using graph convolutional networks,”

in Proc. Design, Autom. Test Eur. Conf. Exhibit. (DATE),

Feb. 2021, pp. 1596–1599.

 [98] A. Chaudhuri et al., “Functional criticality analysis

of structural faults in AI accelerators,” IEEE Trans.

Comput.-Aided Design Integr. Circuits Syst., vol. 41,

no. 12, pp. 5657–5670, Dec. 2022.

 [99] O. Temam, “A defect-tolerant accelerator for emerging

high-performance applications,” in Proc. 39th

Annu. Int. Symp. Comput. Archit. (ISCA), Jun. 2012,

pp. 356–367.

 [100] S. A. El-Sayed et al., “Spiking neuron hardware-level

fault modeling,” in Proc. IEEE 26th Int. Symp. On-Line

Test. Robust Syst. Design (IOLTS), Jul. 2020, pp. 1–4.

 [101] G. Gambardella et al., “Efficient error-tolerant

quantized neural network accelerators,” in Proc. IEEE

Int. Symp. Defect Fault Tolerance VLSI Nanotechnol.

Syst. (DFT), Oct. 2019, pp. 1–6.

 [102] C. De Sio, S. Azimi, and L. Sterpone, “An emulation

platform for evaluating the reliability of deep neural

networks,” in Proc. IEEE Int. Symp. Defect Fault

Tolerance VLSI Nanotechnol. Syst. (DFT), Oct. 2020,

pp. 1–4.

 [103] N. Khoshavi, C. Broyles, and Y. Bi, “Compression or

corruption? A study on the effects of transient faults

on BNN inference accelerators,” in Proc. 21st Int.

Symp. Quality Electron. Design (ISQED), Mar. 2020,

pp. 99–104.

 [104] N. Khoshavi et al., “SHIELDeNN: Online accelerated

framework for fault-tolerant deep neural network

architectures,” in Proc. 57th ACM/IEEE Design Autom.

Conf. (DAC), Jul. 2020, pp. 1–6.

 [105] I. Souvatzoglou et al., “Analyzing the single event

upset vulnerability of binarized neural networks on

SRAM FPGAs,” in Proc. IEEE Int. Symp. Defect Fault

Tolerance VLSI Nanotechnol. Syst. (DFT), Oct. 2021,

pp. 1–6.

 [106] D. Xu et al., “Reliability evaluation and analysis of

FPGA-based neural network acceleration system,”

IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,

vol. 29, no. 3, pp. 472–484, Mar. 2021.

 [107] P. Corneliou et al., “Fine-grained vulnerability analysis

of resource constrained neural inference accelerators,”

in Proc. IEEE Int. Symp. Defect Fault Tolerance VLSI

Nanotechnol. Syst. (DFT), Oct. 2021, pp. 1–6.

 [108] T. Spyrou et al., “Reliability analysis of a spiking

neural network hardware accelerator,” in Proc.

Design, Autom. Test Eur. Conf. Exhibit. (DATE),

Mar. 2022, pp. 370–375.

52 IEEE Design&Test

Testability and Dependability of Artificial Intelligence Hardware

 [109] G. Abich et al., “Applying lightweight soft error

mitigation techniques to embedded mixed precision

deep neural networks,” IEEE Trans. Circuits Syst. I, Reg.

Papers, vol. 68, no. 11, pp. 4772–4782, Nov. 2021.

 [110] G. Abich et al., “The impact of soft errors in memory

units of edge devices executing convolutional neural

networks,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol.

69, no. 3, pp. 679–683, Mar. 2022.

 [111] L. M. Luza et al., “Investigating the impact of

radiation-induced soft errors on the reliability of

approximate computing systems,” in Proc. IEEE Int.

Symp. Defect Fault Tolerance VLSI Nanotechnol. Syst.

(DFT), Oct. 2020, pp. 1–6.

 [112] F. Libano et al., “How reduced data precision

and degree of parallelism impact the reliability of

convolutional neural networks on FPGAs,” IEEE Trans.

Nucl. Sci., vol. 68, no. 5, pp. 865–872, May 2021.

 [113] G. Gambardella et al., “Accelerated radiation test on

quantized neural networks trained with fault aware

training,” in Proc. IEEE Aerosp. Conf. (AERO), Mar.

2022, pp. 1–7.

 [114] R. L. R. Junior et al., “High energy and thermal

neutron sensitivity of Google tensor processing units,”

IEEE Trans. Nucl. Sci., vol. 69, no. 3, pp. 567–575,

Mar. 2022.

 [115] C. Liu et al., “Rescuing memristor-based

neuromorphic design with high defects,” in Proc. 54th

Annu. Design Autom. Conf., Jun. 2017, pp. 1–6.

 [116] E.-I. Vatajelu, G. Di Natale, and L. Anghel, “Special

session: Reliability of hardware-implemented spiking

neural networks (SNN),” in Proc. IEEE 37th VLSI Test

Symp. (VTS), Apr. 2019, pp. 1–8.

 [117] Z. Ye et al., “Evaluation of radiation effects in

RRAM-based neuromorphic computing system

for inference,” IEEE Trans. Nucl. Sci., vol. 66, no. 1,

pp. 97–103, Jan. 2019.

 [118] C.-Y. Chen and K. Chakrabarty, “Efficient

identification of critical faults in memristor crossbars

for deep neural networks,” in Proc. Design,

Autom. Test Eur. Conf. Exhibit. (DATE), Feb. 2021,

pp. 1074–1077.

 [119] F. Chollet et al. (2015). Keras. [Online]. Available:

https://keras.io

 [120] J. Bergstra et al., “Theano: A CPU and GPU math

compiler in python,’’ in Proc. 9th Python Sci. Conf.

(SciPy), Jan. 2010, pp. 18–24.

 [121] M. Abadi et al., “TensorFlow: A system for large-scale

machine learning,” in Proc. 12th USENIX Symp.

Oper. Syst. Design Implement. (OSDI), Nov. 2016,

pp. 265–283.

 [122] S. K. S. Hari et al., “SASSIFI: An architecture-level

fault injection tool for GPU application resilience

evaluation,” in Proc. IEEE Int. Symp. Perform. Anal.

Syst. Softw. (ISPASS), Apr. 2017, pp. 249–258.

 [123] T. Tsai et al., “NVBitFI: Dynamic fault injection for GPUs,”

in Proc. 51st Annu. IEEE/IFIP Int. Conf. Dependable

Syst. Netw. (DSN), Jun. 2021, pp. 284–291.

 [124] D. Oliveira et al., “Experimental and analytical study

of Xeon Phi reliability,” in Proc. Int. Conf. High Perform.

Comput., Netw., Storage Anal. (SC), Nov. 2017,

pp. 1–12.

 [125] S. B. Shrestha and G. Orchard, “SLAYER: Spike

layer error reassignment in time,” in Proc. Adv.

Neural Inf. Process. Syst. (NeurIPS), 2018,

pp. 1412–1421.

 [126] A. Paszke et al., “PyTorch: An imperative style, high-

performance deep learning library,” in Advances in

Neural Information Processing Systems, vol. 32, H.

Wallach et al., Eds. Red Hook, NY, USA: Curran

Associates, 2019, pp. 8024–8035.

 [127] S. Kundu et al., “Toward functional safety of systolic

array-based deep learning hardware accelerators,”

IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol.

29, no. 3, pp. 485–498, Mar. 2021.

 [128] S. Knowles, “Designing the colossus MK2 IPU,” in

Proc. Hot Chips, 2021.

 [129] T. Norrie et al., “The design process for Google’s

training chips: TPUv2 and TPUv3,” IEEE Micro, vol.

41, no. 2, pp. 56–63, Mar./Apr. 2021.

 [130] G. Lauterbach, “The path to successful wafer-scale

integration: The cerebras story,” IEEE Micro, vol. 41,

no. 6, pp. 52–57, Nov. 2021.

 [131] G. Giles et al., “Test access mechanism for multiple

identical cores,” in Proc. IEEE Int. Test Conf. (ITC), Oct.

2008, pp. 1–10.

 [132] K. Chakravadhanula et al., “SmartScan—

Hierarchical test compression for pin-limited low

power designs,” in Proc. IEEE Int. Test Conf. (ITC),

Sep. 2013, pp. 1–9.

 [133] M. Sharma et al., “A novel test access mechanism for

failure diagnosis of multiple isolated identical cores,”

in Proc. IEEE Int. Test Conf., Sep. 2011, pp. 1–9.

 [134] A. Chaudhuri et al., “C-testing and efficient fault

localization for AI accelerators,” IEEE Trans. Comput.-

Aided Design Integr. Circuits Syst., vol. 41, no. 7, pp.

2348–2361, Jul. 2022.

 [135] S. Motaman, S. Ghosh, and J. Park, “A perspective on

test methodologies for supervised machine learning

accelerators,” IEEE J. Emerg. Sel. Topics Circuits Syst.,

vol. 9, no. 3, pp. 562–569, Sep. 2019.

https://keras.io

53March/April 2023

 [136] Y. Huang and R. Singhal, “Tutorial 1B: AI chip

technologies and DFT methodologies,” in Proc. 32nd

IEEE Int. Syst.-on-Chip Conf. (SOCC), Sep. 2019,

pp. 1–2.

 [137] H. Jia et al., “A programmable neural-network

inference accelerator based on scalable in-memory

computing,” in IEEE Int. Solid-State Circuits Conf.

(ISSCC) Dig. Tech. Papers, Feb. 2021, pp. 236–237.

 [138] D. Niu et al., “184 QPS/W 64 Mb/mm2 3D logic-to-

DRAM hybrid bonding with process-near-memory

engine for recommendation system,” in IEEE Int.

Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers,

Feb. 2022, pp. 1–3.

 [139] J.-F. Cote et al., “Streaming scan network (SSN):

An efficient packetized data network for testing of

complex SoCs,” in Proc. IEEE Int. Test Conf. (ITC), Nov.

2020, pp. 1–10.

 [140] G. Boschi et al., “Die-to-die testing and ECC error

mitigation in automotive and industrial safety

applications,” in Proc. IEEE Int. Test Conf. (ITC), Nov.

2020, pp. 1–6.

 [141] M. Hutner, G. Tshagharyan, and G. Harutyunyan,

“Innovative practices on in-system test and reliability

of memories,” in Proc. IEEE VLSI Test Symp. (VTS),

Apr. 2019, p. 1.

 [142] G. Harutyunyan and Y. Zorian, “An effective embedded

test & diagnosis solution for external memories,” in

Proc. IEEE 21st Int. On-Line Test. Symp. (IOLTS), Jul.

2015, pp. 168–170.

 [143] S. Bandyopadhyay et al., “Innovative practices on in-

system test and reliability of memories,” in Proc. IEEE

37th VLSI Test Symp. (VTS), Apr. 2019, p. 1.

 [144] IEEE Standard for Test Access Architecture for

Three-Dimensional Stacked Integrated Circuits, IEEE

Standard 1838-2019, 2020, pp. 1–73.

 [145] A. Gebregiorgis and M. B. Tahoori, “Testing of

neuromorphic circuits: Structural vs functional,” in Proc.

IEEE Int. Test Conf. (ITC), Nov. 2019, pp. 1–10, Paper 3.2.

 [146] W. Li et al., “RRAMedy: Protecting ReRAM-based

neural network from permanent and soft faults during

its lifetime,” in Proc. IEEE 37th Int. Conf. Comput.

Design (ICCD), Nov. 2019, pp. 91–99.

 [147] C.-Y. Chen and K. Chakrabarty, “On-line functional

testing of memristor-mapped deep neural networks

using backdoored checksums,” in Proc. IEEE Int. Test

Conf. (ITC), Oct. 2021, pp. 83–92.

 [148] O. Aramoon and G. Qu, “Provably accurate memory

fault detection method for deep neural networks,” in

Proc. Great Lakes Symp. VLSI (GLSVLSI), Jun. 2021,

pp. 443–448.

 [149] S. T. Ahmed and M. B. Tahoori, “Compact functional

test generation for memristive deep learning

implementations using approximate gradient ranking,”

in Proc. IEEE Int. Test Conf. (ITC), Sep. 2022, pp.

239–248.

 [150] H.-Y. Tseng et al., “Machine learning-based test

pattern generation for neuromorphic chips,” in Proc.

IEEE/ACM Int. Conf. Comput. Aided Design (ICCAD),

Nov. 2021, pp. 1–7.

 [151] S. A. El-Sayed et al., “Compact functional testing

for neuromorphic computing circuits,” IEEE

Trans. Comput.-Aided Design Integr. Circuits

Syst., early access, Nov. 21, 2022, doi: 10.1109/

TCAD.2022.3223843.

 [152] B. Luo et al., “On functional test generation for

deep neural network IPs,” in Proc. Design, Autom.

Test Eur. Conf. Exhibit. (DATE), Mar. 2019,

pp. 1010–1015.

 [153] K. Pei et al., “DeepXplore: Automated whitebox

testing of deep learning systems,” in Proc. 26th Symp.

Operating Syst. Princ. (SOSP), Oct. 2017, pp. 1–18.

 [154] Y. Tian et al., “DeepTest: Automated testing of

deep-neural-network-driven autonomous cars,” in

Proc. 40th Int. Conf. Softw. Eng., May/Jun. 2018, pp.

303–314.

 [155] K. Ma et al., “Efficient low cost alternative testing of

analog crossbar arrays for deep neural networks,”

in Proc. IEEE Int. Test Conf. (ITC), Sep. 2022, pp.

499–503.

 [156] S. A. El-Sayed et al., “Self-testing analog spiking

neuron circuit,” in Proc. 16th Int. Conf. Synth.,

Modeling, Anal. Simulation Methods Appl. Circuit

Design (SMACD), Jul. 2019, pp. 81–84.

 [157] A. Pandey et al., “Novel technique for

manufacturing & in-system testing of large scale

SoC using functional protocol based high-speed

I/O,” in Proc. IEEE 40th VLSI Test Symp. (VTS),

Apr. 2022, pp. 1–7.

 [158] Y. He, T. Uezono, and Y. Li, “Efficient functional

in-field self-test for deep learning accelerators,”

in Proc. IEEE Int. Test Conf. (ITC), Oct. 2021,

pp. 93–102.

 [159] T. Uezono, Y. He, and Y. Li, “Achieving automotive

safety requirements through functional in-field self-

test for deep learning accelerators,” in Proc. IEEE Int.

Test Conf. (ITC), Sep. 2022, pp. 465–473.

 [160] E. Ozen and A. Orailoglu, “Low-cost error detection

in deep neural network accelerators with linear

algorithmic checksums,” J. Electron. Test., Theory

Appl., vol. 36, no. 6, pp. 703–718, Dec. 2020.

54 IEEE Design&Test

Testability and Dependability of Artificial Intelligence Hardware

 [161] E. Ozen and A. Orailoglu, “Concurrent monitoring

of operational health in neural networks through

balanced output partitions,” in Proc. 25th Asia South

Pacific Design Autom. Conf. (ASP-DAC), Jan. 2020,

pp. 169–174.

 [162] S. K. S. Hari et al., “Making convolutions resilient

via algorithm-based error detection techniques,”

IEEE Trans. Depend. Sec. Comput., vol. 19, no. 4,

pp. 2546–2558, Jul./Aug. 2022.

 [163] B. F. Goldstein et al., “A lightweight error-resiliency

mechanism for deep neural networks,” in Proc.

22nd Int. Symp. Quality Electron. Design (ISQED),

Apr. 2021, pp. 311–316.

 [164] N. I. Deligiannis et al., “Towards the integration of

reliability and security mechanisms to enhance the

fault resilience of neural networks,” IEEE Access,

vol. 9, pp. 155998–156012, 2021.

 [165] A. Ruospo et al., “A suitability analysis of

software based testing strategies for the on-line

testing of artificial neural networks applications

in embedded devices,” in Proc. IEEE 27th Int.

Symp. On-Line Test. Robust Syst. Design (IOLTS),

Jun. 2021, pp. 1–6.

 [166] M. Liu and K. Chakrabarty, “Online fault detection

in ReRAM-based computing systems by monitoring

dynamic power consumption,” in Proc. IEEE Int. Test

Conf. (ITC), Nov. 2020, pp. 1–10.

 [167] M. Sadi and U. Guin, “Test and yield loss reduction

of AI and deep learning accelerators,” IEEE Trans.

Comput.-Aided Design Integr. Circuits Syst., vol. 32,

no. 7, pp. 1124–1135, Jan. 2021.

 [168] L. Xia et al., “Stuck-at fault tolerance in RRAM

computing systems,” IEEE J. Emerg. Sel. Topics

Circuits Syst., vol. 8, no. 1, pp. 102–115, Mar. 2018.

 [169] Z. Song et al., “ITT-RNA: Imperfection tolerable

training for RRAM-crossbar-based deep neural-

network accelerator,” IEEE Trans. Comput.-Aided

Design Integr. Circuits Syst., vol. 40, no. 1, pp.

129–142, Jan. 2021.

 [170] L.-H. Hoang, M. A. Hanif, and M. Shafique, “TRe-

map: Towards reducing the overheads of fault-aware

retraining of deep neural networks by merging fault

maps,” in Proc. 24th Euromicro Conf. Digit. Syst.

Design (DSD), Sep. 2021, pp. 434–441.

 [171] S. Kannan et al., “Sneak-path testing of crossbar-

based nonvolatile random access memories,” IEEE

Trans. Nanotechnol., vol. 12, no. 3, pp. 413–426,

May 2013.

 [172] C.-Y. Chen et al., “RRAM defect modeling and failure

analysis based on march test and a novel squeeze-

search scheme,” IEEE Trans. Comput., vol. 64, no. 1,

pp. 180–190, Jan. 2015.

 [173] E. I. Vatajelu et al., “Challenges and solutions in

emerging memory testing,” IEEE Trans. Emerg. Topics

Comput., vol. 7, no. 3, pp. 493–506, Jul./Sep. 2019.

 [174] L. Wu et al., “Defect and fault modeling framework

for STT-MRAM testing,” IEEE Trans. Emerg. Topics

Comput., vol. 9, no. 2, pp. 707–723, Apr./Jun. 2021.

 [175] P. Liu et al., “Fault modeling and efficient testing

of memristor-based memory,” IEEE Trans. Circuits

Syst. I, Reg. Papers, vol. 68, no. 11, pp. 4444–4455,

Nov. 2021.

 [176] P. Girard et al., “A survey of test and reliability

solutions for magnetic random access memories,”

Proc. IEEE, vol. 109, no. 2, pp. 149–169, Feb. 2021.

 [177] L. Wu et al., “Characterization, modeling, and test of

intermediate state defects in STT-MRAMs,” IEEE Trans.

Comput., vol. 71, no. 9, pp. 2219–2233, Sep. 2022.

 [178] M. Fieback et al., “Defects, fault modeling, and test

development framework for RRAMs,” ACM J. Emerg.

Technol. Comput. Syst., vol. 18, no. 3, pp. 1–26,

Apr. 2022.

 [179] T. Han, I. Choi, and S. Kang, “Majority-based test

access mechanism for parallel testing of multiple

identical cores,” IEEE Trans. Very Large Scale Integr.

(VLSI) Syst., vol. 23, no. 8, pp. 1439–1447, Aug. 2015.

 [180] A. Ramdas and O. Sinanoglu, “Testing chips with

spare identical cores,” IEEE Trans. Comput.-Aided

Design Integr. Circuits Syst., vol. 32, no. 7, pp.

1124–1135, Jul. 2013.

 [181] P. N. Variyam, S. Cherubal, and A. Chatterjee,

“Prediction of analog performance parameters using

fast transient testing,” IEEE Trans. Comput.-Aided

Design Integr. Circuits Syst., vol. 21, no. 3, pp. 349-

361, Mar. 2002.

 [182] H.-G. Stratigopoulos and S. Mir, “Adaptive alternate

analog test,” IEEE Design Test Comput., vol. 29, no. 4,

pp. 71–79, Aug. 2012.

 [183] A. Avizienis et al., “Basic concepts and taxonomy

of dependable and secure computing,” IEEE Trans.

Depend. Sec. Comput., vol. 1, no. 1, pp. 11–33,

Jan. 2004.

 [184] G. Buja and R. Menis, “Dependability and functional

safety: Applications in industrial electronics systems,”

IEEE Ind. Electron. Mag., vol. 6, no. 3, pp. 4–12,

Sep. 2012.

 [185] Road Vehicles-Functional Safety, Standard ISO

26262, 2018.

 [186] Edition 2.0 Functional Safety, Standard IEC 61508,

2010.

55March/April 2023

 [187] Software Considerations in Airborne Systems and

Equipment Certification, Standard RTCA/DO-178C,

2012.

 [188] Road Vehicles—Safety of the Intended Functionality,

Standard ISO PAS 21448, 2019.

 [189] J. L. Hennessy and D. A. Patterson, “A new golden age

for computer architecture,” Commun. ACM, vol. 62, no.

2, pp. 48–60, Feb. 2019.

 [190] I. J. Goodfellow, J. Shlens, and C. Szegedy,

“Explaining and harnessing adversarial examples,”

Mar. 2015, arXiv:1412.6572.

 [191] N. Akhtar and A. Mian, “Threat of adversarial attacks

on deep learning in computer vision: A survey,” IEEE

Access, vol. 6, pp. 14410–14430, 2018.

 [192] T. Graepel, K. Lauter, and M. Naehrig, “ML

confidential: Machine learning on encrypted data,” in

Proc. Int. Conf. Inf. Secur. Cryptol. (ICISC), Dec. 2012,

pp. 1–21.

 [193] B. Wang and N. Z. Gong, “Stealing hyperparameters

in machine learning,” in Proc. IEEE Symp. Secur.

Privacy (SP), May 2018, pp. 36–52.

 [194] W. Hua, Z. Zhang, and G. E. Suh, “Reverse

engineering convolutional neural networks through

side-channel information leaks,” in Proc. 55th Annu.

Design Autom. Conf. (DAC), Jun. 2018, pp. 1–6.

 [195] T. Gu et al., “BadNets: Evaluating backdooring attacks

on deep neural networks,” IEEE Access, vol. 7, pp.

47230–47244, 2019.

 [196] H. Chen et al., “DeepInspect: A black-box trojan

detection and mitigation framework for deep neural

networks,” in Proc. 28th Int. Joint Conf. Artif. Intell.

(IJCAI), Jul. 2019, pp. 4658–4664.

 [197] Y. Liu et al., “Fault injection attack on deep neural

network,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided

Design (ICCAD), Nov. 2017, pp. 131–138.

 [198] A. S. Rakin, Z. He, and D. Fan, “Bit-flip attack:

Crushing neural network with progressive bit search,”

in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct./

Nov. 2019, pp. 1211–1220.

 [199] E. Cheng et al., “Cross-layer resilience: Challenges,

insights, and the road ahead,” in Proc. 56th ACM/

IEEE Design Autom. Conf. (DAC), Jun. 2019,

pp. 1–4.

 [200] S. Mittal and J. S. Vetter, “A survey of CPU-GPU

heterogeneous computing techniques,” ACM Comput.

Surv., vol. 47, no. 4, p. 135, Jul. 2015.

 [201] European Commission. (Apr. 2019). Ethics Guidelines

for Trustworthy Artificial Intelligence (AI). [Online].

Available: https://digital-strategy.ec.europa.eu/en/

library/ethics-guidelines-trustworthy-ai

 [202] C.-T. Chin et al., “Training techniques to obtain fault-

tolerant neural networks,” in Proc. IEEE 24th Int. Symp.

Fault-Tolerant Comput., Jun. 1994, pp. 360–369.

 [203] B. S. Arad and A. El-Amawy, “On fault tolerant training

of feedforward neural networks,” Neural Netw., vol.

10, no. 3, pp. 539–553, Apr. 1997.

 [204] N. Wei, S. Yang, and S. Tong, “A modified learning

algorithm for improving the fault tolerance of BP

networks,” in Proc. Int. Conf. Neural Netw. (ICNN), vol.

1, Jun. 1996, pp. 247–252.

 [205] P. J. Edwards and A. F. Murray, “Penalty terms for fault

tolerance,” in Proc. Int. Conf. Neural Netw. (ICNN), vol.

2, Jun. 1997, pp. 943–947.

 [206] S. Cavalieri and O. Mirabella, “A novel learning

algorithm which improves the partial fault tolerance of

multilayer neural networks,” Neural Netw., vol. 12, no.

1, pp. 91–106, Jan. 1999.

 [207] C. Neti, M. H. Schneider, and E. D. Young, “Maximally

fault tolerant neural networks,” IEEE Trans. Neural

Netw., vol. 3, no. 1, pp. 14–23, Jan. 1992.

 [208] D. Deodhare, M. Vidyasagar, and S. S. Keethi,

“Synthesis of fault-tolerant feedforward neural

networks using minimax optimization,” IEEE Trans.

Neural Netw., vol. 9, no. 5, pp. 891–900, Sep. 1998.

 [209] Z.-H. Zhou and S.-F. Chen, “Evolving fault-tolerant

neural networks,” Neural Comput. Appl., vol. 11, nos.

3–4, pp. 156–160, Jun. 2003.

 [210] E. Sugawara, M. Fukushi, and S. Horiguchi, “Fault

tolerant multi-layer neural networks with GA training,”

in Proc. IEEE Int. Symp. Defect Fault Tolerance VLSI

Syst. (DFT), Nov. 2003, pp. 328–335.

 [211] N. C. Hammadi et al., “Fault tolerant constructive

algorithm for feedforward neural networks,” in Proc.

IEEE Pacific Rim Int. Symp. Fault-Tolerant Syst.

(PRFTS), Dec. 1997, pp. 215–220.

 [212] C. Torres-Huitzil and B. Girau, “Fault and error

tolerance in neural networks: A review,” IEEE Access,

vol. 5, pp. 17322–17341, 2017.

 [213] R. A. Solovyev, A. L. Stempkovsky, and D. V.

Telpukhov, “Study of fault tolerance methods for

hardware implementations of convolutional neural

networks,” Opt. Memory Neural Netw., vol. 28, no. 2,

pp. 82–88, Apr. 2019.

 [214] G. B. Hacene et al., “Training modern deep neural

networks for memory-fault robustness,” in Proc.

IEEE Int. Symp. Circuits Syst. (ISCAS), May 2019,

pp. 1–5.

 [215] U. Zahid et al., “FAT: Training neural networks for

reliable inference under hardware faults,” in Proc. IEEE

Int. Test Conf. (ITC), Nov. 2020, pp. 1–10.

https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai
https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai

56 IEEE Design&Test

Testability and Dependability of Artificial Intelligence Hardware

 [216] L. Yang and B. Murmann, “SRAM voltage scaling

for energy-efficient convolutional neural networks,”

in Proc. 18th Int. Symp. Quality Electron. Design

(ISQED), Mar. 2017, pp. 7–12.

 [217] R. V. W. Putra, M. A. Hanif, and M. Shafique,

“SparkXD: A framework for resilient and energy-

efficient spiking neural network inference

using approximate DRAM,” in Proc. 58th ACM/

IEEE Design Autom. Conf. (DAC), Dec. 2021,

pp. 379–384.

 [218] Z. He et al., “Noise injection adaption: End-to-end

ReRAM crossbar non-ideal effect adaption for neural

network mapping,” in Proc. 56th ACM/IEEE Annu.

Design Autom. Conf., Jun. 2019, pp. 1–6.

 [219] Y. Long, X. She, and S. Mukhopadhyay, “Design of

reliable DNN accelerator with un-reliable ReRAM,” in

Proc. Design, Autom. Test Eur. Conf. Exhibit. (DATE),

Mar. 2019, pp. 1769–1774.

 [220] V. Joshi et al., “Accurate deep neural network

inference using computational phase-change

memory,” Nature Commun., vol. 11, no. 1, pp. 1–13,

May 2020.

 [221] Y. Zhu et al., “Statistical training for neuromorphic

computing using memristor-based crossbars

considering process variations and noise,” in Proc.

Design, Autom. Test Eur. Conf. Exhibit. (DATE), Mar.

2020, pp. 1590–1593.

 [222] D. Gaol et al., “Reliable memristor-based

neuromorphic design using variation- and defect-

aware training,” in Proc. IEEE/ACM Int. Conf. Comput.

Aided Design (ICCAD), Nov. 2021, pp. 1–9.

 [223] E. Ozen and A. Orailoglu, “SNR: Squeezing numerical

range defuses bit error vulnerability surface in deep

neural networks,” ACM Trans. Embedded Comput.

Syst., vol. 20, no. 5, pp. 1–25, Sep. 2021.

 [224] M. Bocquet et al., “Embracing the unreliability of

memory devices for neuromorphic computing,” in

Proc. IEEE Int. Rel. Phys. Symp. (IRPS), Apr./May

2020, pp. 1–5.

 [225] A. Azizimazreah et al., “Tolerating soft errors in deep

learning accelerators with reliable on-chip memory

designs,” in Proc. IEEE Int. Conf. Netw., Archit. Storage

(NAS), Oct. 2018, pp. 1–10.

 [226] C. Khunasaraphan, K. Vanapipat, and C. Lursinsap,

“Weight shifting techniques for self-recovery neural

networks,” IEEE Trans. Neural Netw., vol. 5, no. 4, pp.

651–658, Jul. 1994.

 [227] E. Ozen and A. Orailoglu, “Just say zero: Containing

critical bit-error propagation in deep neural networks

with anomalous feature suppression,” in Proc. IEEE/

ACM Int. Conf. Comput.-Aided Design, Nov. 2020,

pp. 1–9.

 [228] E. Ozen and A. Orailoglu, “Boosting bit-error

resilience of DNN accelerators through median

feature selection,” IEEE Trans. Comput.-Aided Design

Integr. Circuits Syst., vol. 39, no. 11, pp. 3250–3262,

Nov. 2020.

 [229] M. D. Emmerson and R. I. Damper, “Determining

and improving the fault tolerance of multilayer

perceptrons in a pattern-recognition application,”

IEEE Trans. Neural Netw., vol. 4, no. 5, pp. 788–793,

Sep. 1993.

 [230] C.-T. Chiu et al., “Robustness of feedforward neural

networks,” in Proc. IEEE Int. Conf. Neural Netw.

(ICNN), vol. 2, Mar./Apr. 1993, pp. 783–788.

 [231] T. Liu et al., “A fault-tolerant neural network

architecture,” in Proc. 56th ACM/IEEE Design Autom.

Conf. (DAC), Jun. 2019, pp. 1–6.

 [232] M. A. Hanif and M. Shafique, “DNN-life: An energy-

efficient aging mitigation framework for improving the

lifetime of on-chip weight memories in deep neural

network hardware architectures,” in Proc. Design,

Autom. Test Eur. Conf. Exhibit. (DATE), Feb. 2021,

pp. 729–734.

 [233] A. Hashmi et al., “Automatic abstraction and fault

tolerance in cortical microachitectures,” in Proc. 38th

Annu. Int. Symp. Comput. Archit., Jun. 2011, pp. 1–10.

 [234] W. Li et al., “FTT-NAS: Discovering fault-tolerant

neural architecture,” in Proc. 25th Asia South Pacific

Design Autom. Conf. (ASP-DAC), Jan. 2020, pp.

211–216.

 [235] L.-H. Hoang, M. A. Hanif, and M. Shafique, “FT-

ClipAct: Resilience analysis of deep neural networks

and improving their fault tolerance using clipped

activation,” in Proc. Design, Autom. Test Eur. Conf.

Exhibit. (DATE), Mar. 2020, pp. 1241–1246.

 [236] Z. Chen, G. Li, and K. Pattabiraman, “A low-cost

fault corrector for deep neural networks through

range restriction,” in Proc. 51st Annu. IEEE/IFIP Int.

Conf. Dependable Syst. Netw. (DSN), Jun. 2021,

pp. 1–13.

 [237] B. Ghavami et al., “FitAct: Error resilient deep neural

networks via fine-grained post-trainable activation

functions,” in Proc. Design, Autom. Test Eur. Conf.

Exhibit. (DATE), Mar. 2022, pp. 1239–1244.

 [238] S. Burel, A. Evans, and L. Anghel, “Improving

DNN fault tolerance in semantic segmentation

applications,” in Proc. IEEE Int. Symp. Defect Fault

Tolerance VLSI Nanotechnol. Syst. (DFT), Oct. 2022,

pp. 1–6.

57March/April 2023

 [239] Z. Xu and J. Abraham, “Safety design of a

convolutional neural network accelerator with error

localization and correction,” in Proc. IEEE Int. Test

Conf. (ITC), Nov. 2019, pp. 1–10, Paper 12.3.

 [240] M. Liu et al., “Algorithmic fault detection for RRAM-based

matrix operations,” ACM Trans. Design Autom. Electron.

Syst., vol. 25, no. 3, pp. 29:1–29:31, May 2020.

 [241] K. Zhao et al., “FT-CNN: Algorithm-based fault

tolerance for convolutional neural networks,” IEEE

Trans. Parallel Distrib. Syst., vol. 32, no. 7, pp.

1677–1689, Jul. 2021.

 [242] J. Kosaian and K. V. Rashmi, “Arithmetic-intensity-

guided fault tolerance for neural network inference

on GPUs,” in Proc. Int. Conf. High Perform. Comput.,

Netw., Storage Anal. (SC), Nov. 2021, pp. 1–15.

 [243] D. Filippas et al., “Low-cost online convolution checksum

checker,” IEEE Trans. Very Large Scale Integr. (VLSI)

Syst., vol. 30, no. 2, pp. 201–212, Feb. 2022.

 [244] C. S. Mummidi et al., “A highly-efficient error detection

technique for general matrix multiplication using

tiled processing on SIMD architecture,” in Proc. IEEE

40th Int. Conf. Comput. Design (ICCD), Oct. 2022,

pp. 529–536.

 [245] C. Schorn, A. Guntoro, and G. Ascheid, “Accurate

neuron resilience prediction for a flexible reliability

management in neural network accelerators,” in Proc.

Design, Autom. Test Eur. Conf. Exhibit. (DATE), Mar.

2018, pp. 979–984.

 [246] M. A. Hanif and M. Shafique, “SalvageDNN:

Salvaging deep neural network accelerators with

permanent faults through saliency-driven fault-

aware mapping,” Philos. Trans. Roy. Soc. A, Math.,

Phys. Eng. Sci., vol. 378, no. 2164, Feb. 2020, Art.

no. 20190164.

 [247] A. Ruospo and E. Sanchez, “On the reliability

assessment of artificial neural networks running on

AI-oriented MPSoCs,” Appl. Sci., vol. 11, no. 14, p.

6455, Jul. 2021.

 [248] R. V. W. Putra, M. A. Hanif, and M. Shafique,

“ReSpawn: Energy-efficient fault-tolerance for spiking

neural networks considering unreliable memories,”

in Proc. IEEE/ACM Int. Conf. Comput. Aided Design

(ICCAD), Nov. 2021, pp. 1–9.

 [249] S.-K. Lu et al., “Fault resilience techniques for flash

memory of DNN accelerators,” in Proc. IEEE Int. Test

Conf. Asia (ITC-Asia), Sep. 2022, pp. 591–600.

 [250] E. Talpes et al., “Compute solution for Tesla’s full

self-driving computer,” IEEE Micro, vol. 40, no. 2, pp.

25–35, Mar. 2020.

 [251] K. Matsubara et al., “A 12 nm autonomous-driving

processor with 60.4 TOPS, 13.8 TOPS/W CNN

executed by task-separated ASIL D control,” in IEEE

Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech.

Papers, Feb. 2021, pp. 56–58.

 [252] M. Abdulrahman et al., “HarDNN: Feature map

vulnerability evaluation in CNNs,” CoRR, vol.

abs/2002.09786, pp. 1–14, Dec. 2020.

 [253] H. R. Mahdiani, S. M. Fakhraie, and C. Lucas,

“Relaxed fault-tolerant hardware implementation of

neural networks in the presence of multiple transient

errors,” IEEE Trans. Neural Netw. Learn. Syst., vol. 23,

no. 8, pp. 1215–1228, Aug. 2012.

 [254] A. Ruospo et al., “Selective hardening of critical

neurons in deep neural networks,” in Proc. 25th Int.

Symp. Design Diagnostics Electron. Circuits Syst.

(DDECS), Apr. 2022, pp. 136–141.

 [255] C. Liu et al., “HyCA: A hybrid computing architecture

for fault-tolerant deep learning,” IEEE Trans. Comput.-

Aided Design Integr. Circuits Syst., vol. 41, no. 10,

pp. 3400–3413, Oct. 2022.

 [256] Z. Gao et al., “Soft error tolerant convolutional neural

networks on FPGAs with ensemble learning,” IEEE

Trans. Very Large Scale Integr. (VLSI) Syst., vol. 30,

no. 3, pp. 291–302, Mar. 2022.

 [257] B. Reagen et al., “Minerva: Enabling low-power,

highly-accurate deep neural network accelerators,” in

Proc. ACM/IEEE 43rd Annu. Int. Symp. Comput. Archit.

(ISCA), Jun. 2016, pp. 267–278.

 [258] W. Li et al., “Soft error mitigation for deep convolution

neural network on FPGA accelerators,” in Proc. 2nd

IEEE Int. Conf. Artif. Intell. Circuits Syst. (AICAS), Aug.

2020, pp. 1–5.

 [259] S. Burel, A. Evans, and L. Anghel, “MOZART+:

Masking outputs with zeros for improved architectural

robustness and testing of DNN accelerators,” IEEE

Trans. Device Mater. Rel., vol. 22, no. 2, pp. 120–128,

Jun. 2022.

 [260] S. Burel, A. Evans, and L. Anghel, “Zero-overhead

protection for CNN weights,” in Proc. IEEE Int. Symp.

Defect Fault Tolerance VLSI Nanotechnol. Syst. (DFT),

Oct. 2021, pp. 1–6.

 [261] R. V. W. Putra, M. A. Hanif, and M. Shafique, “SoftSNN:

Low-cost fault tolerance for spiking neural network

accelerators under soft errors,” in Proc. 59th ACM/IEEE

Design Autom. Conf. (DAC), Jul. 2022, pp. 151–156.

 [262] A. Agrawal, C. Lee, and K. Roy, “X-CHANGR:

changing memristive crossbar mapping for mitigating

line-resistance induced accuracy degradation in deep

58 IEEE Design&Test

Testability and Dependability of Artificial Intelligence Hardware

neural networks,” CoRR, vol. abs/1907.00285, pp.

1–8, Jun. 2019.

 [263] T. Titirsha et al., “Endurance-aware mapping of

spiking neural networks to neuromorphic hardware,”

IEEE Trans. Parallel Distrib. Syst., vol. 33, no. 2, pp.

288–301, Feb. 2022.

 [264] S.-S. Lee and J.-S. Yang, “Value-aware parity

insertion ECC for fault-tolerant deep neural network,”

in Proc. Design, Autom. Test Eur. Conf. Exhibit. (DATE),

Mar. 2022, pp. 724–729.

 [265] C. Schorn, A. Guntoro, and G. Ascheid, “Efficient

on-line error detection and mitigation for deep neural

network accelerators,” in Proc. Int. Conf. Comput. Saf.

Rel. Secur. (SAFECOMP), Sep. 2018, pp. 205–219.

 [266] S. Kim et al., “MATIC: Learning around errors for

efficient low-voltage neural network accelerators,” in

Proc. Design, Autom. Test Eur. Conf. Exhibit. (DATE),

Mar. 2018, pp. 1–6.

 [267] P. N. Whatmough et al., “A 28 nm SoC with a 1.2

GHz 568 nJ/prediction sparse deep-neural-network

engine with >0.1 timing error rate tolerance for IoT

applications,” in IEEE Int. Solid-State Circuits Conf.

(ISSCC) Dig. Tech. Papers, Feb. 2017, pp. 242–243.

 [268] J. Zhang et al., “ThUnderVolt: Enabling aggressive

voltage underscaling and timing error resilience for

energy efficient deep learning accelerators,” in Proc.

55th ACM/ESDA/IEEE Design Autom. Conf. (DAC),

Jun. 2018, pp. 1–6.

 [269] A. P. Johnson et al., “Homeostatic fault tolerance

in spiking neural networks: A dynamic hardware

perspective,” IEEE Trans. Circuits Syst. I, Reg. Papers,

vol. 65, no. 2, pp. 687–699, Feb. 2018.

 [270] L. Xia et al., “Fault-tolerant training enabled by on-line

fault detection for RRAM-based neural computing

systems,” IEEE Trans. Comput.-Aided Design Integr.

Circuits Syst., vol. 38, no. 9, pp. 1611–1624, Sep. 2019.

 [271] S. Zhang et al., “Aging-aware lifetime enhancement

for memristor-based neuromorphic computing,” in

Proc. Design, Autom. Test Eur. Conf. Exhibit. (DATE),

Mar. 2019, pp. 1751–1756.

 [272] P. I. Vaz et al., “Improving TID radiation robustness

of a CMOS OxRAM-based neuron circuit by using

enclosed layout transistors,” IEEE Trans. Very Large

Scale Integr. (VLSI) Syst., vol. 29, no. 6, pp. 1122–

1131, Jun. 2021.

 [273] M. V. Beigi and G. Memik, “Thermal-aware

optimizations of ReRAM-based neuromorphic

computing systems,” in Proc. 55th Annu. Design

Autom. Conf. (DAC), Jun. 2018, pp. 1–6.

 [274] H. Shin, M. Kang, and L.-S. Kim, “A thermal-aware

optimization framework for ReRAM-based deep

neural network acceleration,” in Proc. IEEE/ACM Int.

Conf. Comput.-Aided Design, Nov. 2020, pp. 1–9.

 [275] J. Meng et al., “Temperature-resilient RRAM-based in-

memory computing for DNN inference,” IEEE Micro,

vol. 42, no. 1, pp. 89–98, Jan./Feb. 2022.

 [276] N. Srivastava et al., “Dropout: A simple way to prevent

neural networks from overfitting,” J. Mach. Learn.

Res., vol. 15, no. 1, pp. 1929–1958, Jun. 2014.

 [277] B. Zoph and Q. V. Le, “Neural architecture search

with reinforcement learning,” in Proc. Int. Conf. Learn.

Represent. (ICLR), Apr. 2017, pp. 1–16.

 [278] D. Ernst et al., “Razor: Circuit-level correction of

timing errors for low-power operation,” IEEE Micro,

vol. 24, no. 6, pp. 10–20, Nov./Dec. 2004.

 [279] K.-H. Huang and J. A. Abraham, “Algorithm-based

fault tolerance for matrix operations,” IEEE Trans.

Comput., vol. C-33, no. 6, pp. 518–528, Jun. 1984.

Fei Su is a DFX and telemetry architect at Intel
Corporation, Folsom, CA 95630 USA. His research
interests include testability and dependability of
semiconductor circuits/chiplets, AI/ML hardware,
cyber–physical systems, and edge/cloud comput-
ing. Su has a PhD from Duke University, Durham, NC,
USA. He is a Senior Member of IEEE.

Chunsheng Liu is the leader of the DFT Team at
Alibaba Inc, Sunnyvale, CA 94085 USA. His research
interests include test infrastructure for high-perfor-
mance processors, FPGA, and machine-learning
accelerators, as well as high dependability of cloud
computing hardware. Liu has a PhD from Duke Uni-
versity, Durham, NC, USA. He is a Senior Member
of IEEE.

Haralampos-G. Stratigopoulos is a
research director of the French National Center for
Scientific Research (CNRS) at the LIP6 Labora-
tory, Sorbonne Université, 75005 Paris, France. His
research interests include neuromorphic computing,
hardware security, and design-for-test of integrated
circuits and systems. Stratigopoulos has a PhD from
Yale University, New Haven, CT, USA. He is a Mem-
ber of IEEE.

 Direct questions and comments about this article
to Haralampos-G. Stratigopoulos, Sorbonne Univer-
sité, CNRS, LIP6, France; haralampos.stratigopou-
los@lip6.fr.

592168-2364/22©2022 IEEECopublished by the IEEE CEDA, IEEE CASS, IEEE SSCS, and TTTCMarch/April 2023

Shaping Resilient AI
Hardware Through DNN
Computational Feature
Exploitation

 Deep learning has become an indispensable
part of our modem infrastructure in the past decade.
Our transportation, healthcare devices, and indus-
trial control systems will heavily rely on deep learn-
ing algorithms in the near future, portending the
immense potential for delivering solutions to the fun-
damental challenges of humankind. The safety and
reliability of deep learning accelerators have been
promoted to the ranks of essential design consider-
ations as the adoption of deep learning techniques
in safety-critical application domains, including
autonomous driving, healthcare devices, robotics,
and industrial control systems, grows apace. Expo-
sure to harsh environmental conditions or design
marginalities may lift the likelihood of hardware
errors considerably; the error effects might result in
disastrous consequences and even threaten human

life. Dedicated functional
safety mechanisms are
consequently necessi-
tated in these domains to
thwart such catastrophic
scenarios.

Error tolerance in
deep neural networks (DNNs) is governed by rules
that differ from those of general-purpose comput-
ing. It is widely acknowledged that neural networks
can maintain accuracy, to a large extent, under
small error perturbations even when such error
effects widely diffuse throughout the model. Nev-
ertheless, hardware errors with numerical impacts
that stretch beyond the prescribed perturbation lev-
els constitute the Achilles’ heel for DNNs, as even
a handful of large-magnitude errors can noticeably
deteriorate classification accuracy [1]. The com-
prehension of the inherent resilience and vulnera-
bility characteristics of DNNs is therefore essential
for error resilience integration into deep learning
hardware at palatable costs.

What makes this investigation for novel fault tol-
erance promising is the inherent resilience of neu-
ral networks to minor perturbations together with
the learning flexibility of deep learning models
even when constricted by imposed constraints. This
flexibility of neural networks affords the construc-
tion of novel error identification mechanisms by
shaping the inherent redundancy of deep learning

Digital Object Identifier 10.1109/MDAT.2022.3156016

Date of publication: 2 March 2022; date of current version:

10 March 2023.

Elbruz Ozen and Alex Orailoglu
Department of Computer Science and Engineering
University of California at San Diego
La Jolla, CA 92093 USA

Editor’s notes:
This article presents a method that allows deep neural networks (DNNs)
to learn and construct self-checking mechanisms so as to detect and
suppress large magnitude hardware errors.

—Fei Su, Intel Corporation

60 IEEE Design&Test

Testability and Dependability of Artificial Intelligence Hardware

algorithms. Moreover, the resilience of neural net-
works to minor perturbations opens up opportuni-
ties for approximate error mitigation without having
to pay for perfect value restoration.

Innovative approaches for introspective error
localization and approximate error amelioration are
essential to reap the benefits of the outlined compu-
tational characteristics of neural networks. Instead of
conventional and costly error detection techniques,
DNNs can identify critical hardware bit errors via
self-error-checking invariants learned through the
training process. We demonstrate that error detec-
tion invariants can be crafted at various granularities
based on the needs of the application to enable low-
cost error detection and precise error localization in
the deep learning hardware datapath while necessi-
tating no additional information redundancy.

In lieu of precise correction of the error per-
turbations, the impact of bit errors can be largely
contained through anomaly1 suppression, which is
carried out by dropping or filtering variables that are
contaminated with errors. The extreme effectiveness
of these methods in maintaining model accuracy is
experimentally established even at high error rates,
while the implementation of the aforementioned
techniques rarely incurs perceptible costs nor neces-
sitates any information redundancy to deliver such
error rectification. By simply snapping outsized error
effects back to within the realm of minor numerical
inaccuracies, procedures such as dropping errone-
ous values squash the error impact effectively and
improve the bit error tolerance of deep learning
algorithms by exploiting their inherent resilience
characteristics to limited magnitude perturbations
and complementing their inherent sparsity.

The approximate and resilient nature of DNNs
yields the possibility of large-scale and efficient
accuracy preservation by prioritizing the large-mag-
nitude bit errors and effectively attenuating them
through the outlined approach. Such a perspective
foreshadows fundamental breakthroughs for the
error resilience problem in deep learning hardware
and leads to strong functional safety characteristics
at almost negligible costs.

Related work
Traditional fault tolerance methods are frequently

utilized in safety-critical electronics. Parity bits and

1The term “anomaly” in this article refers to cases where a variable diverges from its
learned and expected value due to a hardware error.

error correction codes (ECCs) can protect data
integrity in memory elements, and modular redun-
dancy techniques are frequently employed in the
execution path. Traditional fault tolerance mecha-
nisms, particularly modular redundancy techniques,
incur significant area and power overheads that may
prove prohibitive for the resource-constrained deep
learning hardware platforms.

Fault tolerance methods specific to neural net-
works have recently attracted attention as they
promise strong error resilience characteristics at
much more palatable costs in deep learning hard-
ware. Novel error detection techniques such as
symptom-based detectors [2] rely on the expected
distribution of neural network variables to identify
anomalies. Algorithmic checksums [1] can detect
bit errors in neural networks by utilizing the linearity
property of convolutional and fully connected lay-
ers. Novel recent studies [3], [4] demonstrate that
algorithmic consistency checks can be encoded in
neural networks through the training process, and
error detection can be achieved through additional
checker neurons. The inherent resilience charac-
teristics of neural networks can be boosted through
various error mitigation techniques, including acti-
vation range restriction [5] to attenuate large magni-
tude errors, and training the deep learning models in
the presence of faults [6] to adapt to error perturba-
tions. Moreover, computational fabric particularities
can be utilized to innovate the testing techniques for
deep learning accelerators [7].

Overview of neural network
characteristics

This section presents a brief tutorial on DNN
computational characteristics that are of fundamen-
tal importance to the construction of novel error
detection and mitigation techniques in deep learn-
ing hardware.

The behavior of DNNs is determined by the
parameter configuration learned through the train-
ing process. The training procedure is carried out by
modifying the model parameters at each step to min-
imize the loss function, which measures the close-
ness of the target value and the produced output by
the neural network. Additional behavioral goals can
thus be embedded into DNNs by augmenting the
loss function with well-crafted supplementary terms
for the desired goals. To illustrate, two parameters
can be forced to be as numerically close as possible

61March/April 2023

simply by adding their distance (|w1 – w2|) to the loss
function as an additional term. Such techniques con-
stitute a highly effective approach for embedding
invariants into DNNs, thus enabling the error-caused
violation of such invariants at inference time to serve
as practical error detection mechanisms.

Moreover, the flexibility of the training process in
neural networks spawns a diverse set of models of
comparable accuracy levels, even including ones that
fulfill strict constraints imposed on the computational
graph. For instance, the forward pass of the model can
be modified to rein in the propagated variable mag-
nitude if the observed magnitude is unusually larger
than the expected value. Neural networks can be
trained effectively under graph constraints as long as
the necessary information represented in the forward
pass and the backward pass is able to be carried out
efficiently. Invariants embedded into neural networks
through the imposed graph constraints can then be
utilized for error identification at inference time.

A few other essential properties of DNNs can fur-
ther introduce significant innovations to the error
correction problem in deep learning hardware. Con-
sider for starters that the final classification decision
in a neural network is performed by finding the out-
put position with the highest value in the last Softmax
layer; an error in the intermediate variables is deemed
therefore noncritical as long as the output position of
the numerically largest value in the last layer remains
constant. Second, the distribution of neural network
parameters is observed to be clustered around zero
and often span only a minute numerical range [8].
In a similar vein, not only are the majority of the
observed activations restricted to small values as well,
but they exhibit high levels of sparsity furthermore.

The inherent resilience characteristics and the
predictable and well-behaved numerical distribution
of neural network variables bolster the feasibility of
approximate error correction. The value of an errone-
ous variable can be effectively estimated so as to min-
imize its impact on the output and maintain accuracy
without necessitating perfect value restoration, thus
significantly reducing the need for information redun-
dancy for error correction operations. Furthermore,
certain training techniques can increase the correla-
tion across variables [9] and impart even higher pre-
cision to the value restoration process.

The outlined properties of neural networks are
fundamental to the context of our discussion as
they catalyze innovation in the neural network fault

tolerance problem to deliver superior resilience
goals often with insignificant overheads.

Learning error-checking invariants in
neural networks

The flexibility of the training process can be uti-
lized to inject useful invariants in DNNs, which facil-
itate highly cost-efficient error detection even across
nonlinearities. We identify two types of potential
invariants that can be injected into deep learning
models for coarse-grained detection and fine-grained
error localization. The embedding of these invariant
types is achieved through dedicated regularization
terms in the training loss function [10], and the
integration of custom weight or activation propa-
gation rules in the neural network graph [9], [11],
respectively.

The first approach introduces coarse-grained
error-checking invariants (i.e., checksums) in neural
network layers by employing a custom regularization
term in the training loss function. This scheme can
be constructed easily in a few fundamental steps.
We first partition the outputs of each neural network
layer into two groups, such as two neuron groups
for the fully connected layers or two output chan-
nel groups for the convolutional layers. The outputs
of the two partitions are accumulated separately in
the channel dimension, and the mean squared dif-
ference of the accumulations for the two partitions is
included as a penalty term in the loss function. The
introduced penalty term reduces the observed max-
imum mean squared differences between the group
summations (i.e., maximum checksum deviation)
to the tune of a few magnitude orders, as demon-
strated in Figure 1. The significant reduction in group
differences and the consequent balancing provides
ample resolution for error detection in the case of a
numerical error modifying the sum in one partition,
thus distorting the established balance. Fortuitously,
the employed penalty term of group differences
usually operates as a regularizer as well, leading to
improved generalization and higher test/validation
set accuracy, as also visualized in Figure 1.

Error checking at runtime can be performed by
monitoring the group summation differences at
each layer through a single additional neuron or a
1 × 1 convolution filter in the subsequent layer, as an
example for the fully connected layers illustrates in
Figure 2. The expected maximum deviation value in
the absence of errors is identified through one-time

62 IEEE Design&Test

Testability and Dependability of Artificial Intelligence Hardware

profiling at each layer. If the output of the checker
neuron deviates from zero by more than the profiled
threshold for the corresponding layer, it signals an
error presence. Our experimental analysis in [10]
affirms that balanced output partitions detect more
than 95% of the error-caused misclassification cases
without any false alarms. The software implemen-
tation of this approach incurs a negligible increase
in parameters and a performance overhead con-
strained to around 1% on a CPU.

While such coarse-grained invariants provide
information only on error presence but no precise
error localization, they enjoy the advantage of an
entire software implementation with native neural
network operations that are deployed with ease in

off-the-shelf hardware platforms, including CPUs,
GPUs, and deep learning accelerators. Moreover, the
footprint on the obtained model is found to be rather
minimal. Coarse-grained invariants are ideal for safe-
ty-critical designs that necessitate the detection of
rare error incidents (i.e., single-event upsets caused
by high-energy particles) where the mitigation action
can be effected through system-level approaches.

An alternate approach we propose brings on more
precise localization of anomalous DNN variables
through the imposition of local variable propagation
rules in the computational graph. An example propa-
gation rule could be a simple numerical order relation-
ship across the neighboring variables where a weight
or activation variable Ac is declared anomalous if its
magnitude unusually exceeds the neighboring value
Ac+1 by a preset relationship (Figure 3a), otherwise
deemed normal (Figure 3b) and propagated in the
neural network graph with no modification.

Fine-grained invariants can be embedded into
neural network layers by imposing custom propa-
gation rules in both the forward and the backward
pass of training and ensuring that the deep learning
model attains a competitive accuracy within the
confines of these rules. Invariant integration incur-
ring neither additional information redundancy nor
baseline accuracy degradation can be achieved
through inherent model redundancy and training
process flexibility [9], [11].

The violation of these embedded invariants due
to a hardware error can localize the erroneous vari-
ables at inference time with high precision. The fine-
grained nature of such invariants engenders precise
error localization even in the presence of multiple
errors. After error localization, the novel error sup-
pression methods to be outlined in the next section
can be employed to contain error effects and main-
tain neural network accuracy gracefully even while
suffering extreme bit error rates unimaginable in
conventional fault-tolerant designs.

While the footprint of fine-grained invariants on
the trained model is more noticeable than the coarse-
grained counterparts, the inherent redundancy of
modern deep learning models allows injection of
such invariants into the model without requiring any
additional information redundancy or impacting
error-free model accuracy. Minor hardware exten-
sions are necessary for the accelerator designs to
check the invariant conditions and perform the miti-
gation actions efficiently, as discussed further in the

Figure 1. Balance checksum deviation and model
accuracy due to regularization (DNN model
similar to AlexNet trained on German Traffic Sign
Recognition Benchmark [GTSRB] data set).

Figure 2. Error checking at inference time via
coarse-grained invariants.

63March/April 2023

next section. Unlike their coarse-grained counter-
parts, fine-grained invariants can localize the errors
with high precision, and when paired with novel
error suppression methods, deliver complete algo-
rithmic resilience for even extreme bit error rates of
up to a few percent.

Maintaining neural network accuracy
with error suppression

We have illustrated that the problem of error
detection could be resolved in an innovative man-
ner by integrating computational invariants into neu-
ral networks and employing them for error detection
in inference. The localization of the errors through
the fine-grained invariants can be followed up by the
suppression of the numerical distortion prior to the
execution of each layer. Such suppression can be
effected by dropping variables (setting to zero), clip-
ping their magnitude to within the usual range [11],
or passing the variables through filtering operations
[9], as demonstrated in Figure 4. Disproportionate
error effects can thus be arrested at their tracks and
reduced back to size before they have had a chance
to diffuse in the network. The beneficial impact of
error suppression can also be enjoyed when drop-
ping erroneous variables by setting them to zero.
This alternate approach can effectively alleviate the
impact of large-magnitude errors since the inherent
sparsity of DNNs and the clustered distribution of
DNN variables around zero leads to graceful tolera-
tion of variable drop effects.

Introduced fine-grained invariants can be checked
and the anomalous variables suppressed efficiently
at inference time through dedicated hardware
extensions in DNN accelerators. These extensions
can be implemented at minimal hardware cost with
basic hardware components such as comparators

and multiplexers. Figure 5 demonstrates a possible
option for hardware integration where the detection
and suppression are carried out prior to processing
each neural network layer in the accelerator pipe-
line. The proposed placement of the dedicated hard-
ware unit protects against SRAM buffer errors and
timing errors in the computational fabric. Anomaly
detection and suppression techniques require no
additional information redundancy, with the asso-
ciated operations performed efficiently in hardware
with no throughput impact while imposing area and
power overheads of less than 0.5% and 0.2%, respec-
tively, when implemented on a typical DNN acceler-
ator (DNNWeaver v2.0 [12]).

Overall, the two outlined novel mechanisms of
error localization and suppression can be coupled
to deliver highly resilient neural network processing
systems. Potential error locations are pinpointed

Figure 3. Anomaly detection with local
magnitude comparison.

Figure 4. Median filtering in fully connected
layers.

Figure 5. Anomaly detection and suppression in
a deep learning accelerator.

64 IEEE Design&Test

Testability and Dependability of Artificial Intelligence Hardware

through computational invariants injected through
the learning process, and anomalous variables
are snapped back outright before they have had a
chance to propagate and influence the neural net-
work decisions. In contrast to the outright effect of
the large deviation bit errors encountered, the impact
of suppression, which accords with the inherent
distribution of neural network variables, on model
accuracy is highly muted. The described approach
is a potent strategy to engender approximate error
resilience methods, revolutionizing our perspectives
on functional safety for deep learning hardware. As
a result, strict safety goals can be attained at minimal
additional cost in DNN applications.

Experimental analysis
We demonstrate the effectiveness of the proposed

methods in Figure 6 by performing error injection on
three different neural network and data set pairs and
measuring the classification accuracy at various acti-
vation and weight error rates.

Baseline results establish the inherent extent of
the fault tolerance of the deep learning models with
no embedded error resilience mechanism. DNNs

with median filters check activations prior to the
execution of each layer through filtering operations
in the channel dimension. We implement the pro-
posed median filtering technique with two distinct
filter sizes to measure its effectiveness at different
design points. We construct fine-grained invariants in
neural network models through the local magnitude
comparison method (Figure 3) and perform anom-
aly suppression on erroneous variables by dropping
outright or clipping their magnitude to the expected
range. Finally, we construct two triple modular
redundancy (TMR) techniques for comparison. The
target neural network is replicated three times, each
instance executed independently to deliver its own
classification, and the final decision is made through
majority voting in a model-based TMR technique. In
layer-based TMR, each neuron/filter is triplicated,
and the neuron/filter output is produced through
majority voting at each layer before proceeding with
the execution of the subsequent layer.

Our experimental analysis validates our expec-
tations that deep learning models are prone to a
noticeable accuracy drop even at low error rates
when suffering large-magnitude error deviations. We

Figure 6. Error resilience of DNNs under different fault tolerance methods.

65March/April 2023

observe that model-based TMR is often ineffective
in boosting neural network resilience over baseline
models. Layer-based TMR, on the other hand, is
shown to be effective as each bit error is squashed
immediately at each layer in this scheme before it
has had a chance to propagate to neural network
outputs. However, the large overheads of layer-based
TMR may prove inhibitive in practical applications.

The proposed novel techniques attained through
median filtering and fine-grained invariants coupled
with error suppression (i.e., dropping and clipping)
can provide extensive bit error resilience in the tar-
get deep learning models even when afflicted by
thousands of bit errors scattered throughout the
model. The proposed methods operate on activa-
tions and offer resilience against up to 10,000 times
higher activation error rates; an indirect impact on
weight error resilience to withstand up to 50 times
higher error rates can be furthermore enjoyed as the
propagation of weight errors in a particular layer can
still be suppressed through the activation checks in
the subsequent layer. Weight error resilience can be
further bumped up by performing invariant injection
and error suppression operations on the weights
directly prior to each layer’s execution. We observe
that neural network error resilience characteristics
obtained through the proposed novel techniques
are even superior to layer-based TMR despite incur-
ring no additional information redundancy.

Discussion
The novel techniques we outline focus primarily

on the data path and buffers where the majority of
hardware resources are allocated, and the cost of
delivering functional safety through conventional
fault tolerance methods proves to be exceedingly
high. While control path integrity is just as impor-
tant, the inordinate cost of traditional techniques
can be easily borne for the small footprint of con-
trol circuitry in deep learning accelerators that may
necessitate absolute resilience.

We attain strong error resilience and competitive
accuracy through the inherent flexibility and redun-
dancy of neural networks. Neural networks embed
redundancy in various dimensions, and the redun-
dancy types that cannot be effectively squeezed
through model compression can be utilized for
boosting error resilience at no additional cost. Our
preliminary investigations indicate that model com-
pression methods such as pruning can be applied

to the proposed models without impacting their out-
standing error resilience characteristics. On the other
hand, introduced invariants can lead to dependen-
cies across neighboring variables, which need to be
taken into consideration during the model compres-
sion process. Future investigations will focus on the
effective deployment of model compression tech-
niques on the proposed models.

While the outlined analysis focuses on convolu-
tional and fully connected layers, the proposed tech-
niques are expected to generalize to a wide range of
DNNs, such as recurrent models and other emerging
neural network architectures.

Overall, the computational characteristics of neu-
ral networks can enable significant breakthroughs
for the error resilience problem in deep learning
hardware, delivering highly effective solutions at
imperceptible overheads.

The error resilience of DNNs can be boosted
noticeably by restricting and containing the numer-
ical contribution of the errors without necessitating
explicit error correction steps. The proposed novel
error detection and remediation techniques can
complement each other seamlessly to tackle errors
with high precision, while neither incurring addi-
tional information redundancy nor having a noticea-
ble impact on the error-free classification accuracy.
The proposed approach innovatively redefines the
error resilience problem in the context of DNNs,
thus unlocking effective opportunities for efficiently
embedding functional safety into the next genera-
tion of machine intelligence hardware.

 References
 [1] E. Ozen and A. Orailoglu, “Sanity-check: Boosting

the reliability of safety-critical deep neural network

applications,” in Proc. ATS, 2019, pp. 7–12.

 [2] G. Li et al., “Understanding error propagation in deep

learning neural network (DNN) accelerators and

applications,” in Proc. SC, 2017, pp. 1–12.

 [3] S. Pandey, S. Banerjee, and A. Chatterjee, “Error

resilient neuromorphic networks using checker

neurons,” in Proc. IOLTS, 2018, pp. 135–138.

 [4] S. Pandey, S. Banerjee, and A. Chatterjee, “ReiNN:

Efficient error resilience in artificial neural networks

using encoded consistency checks,” in Proc. ETS,

2018, pp. 1–2.

 [5] L.-H. Hoang, M. A. Hanif, and M. Shafique, “FT-ClipAct:

Resilience analysis of deep neural networks and

66 IEEE Design&Test

Testability and Dependability of Artificial Intelligence Hardware

improving their fault tolerance using clipped activation,”

in Proc. DATE, 2020, pp. 1241–1246.

 [6] G. B. Hacene et al., “Training modern deep neural

networks for memory-fault robustness,” in Proc. ISCAS,

2019, pp. 1–5.

 [7] A. Chaudhuri et al., “C-testing of AI accelerators,” in

Proc. ATS, 2020, pp. 1–6.

 [8] S. Han et al., “Learning both weights and connections

for efficient neural networks,” in Proc. Adv. Neural Inf.

Process. Syst., vol. 28, 2015, pp. 1135–1143.

 [9] E. Ozen and A. Orailoglu, “Boosting bit-error resilience

of DNN accelerators through median feature

selection,” IEEE Trans. Comput.-Aided Design Integr.

Circuits Syst., vol. 39, no. 11, pp. 3250–3262, Nov.

2020.

 [10] E. Ozen and A. Orailoglu, “Concurrent monitoring

of operational health in neural networks through

balanced output partitions,” in Proc. ASP-DAC, 2020,

pp. 169–174.

 [11] E. Ozen and A. Orailoglu, “Just say zero: Containing

critical bit-error propagation in deep neural networks

with anomalous feature suppression,” in Proc. ICCAD,

2020, pp. 1–9.

 [12] H. Sharma et al., “From high-level deep neural models

to FPGAs,” in Proc. MICRO, 2016, pp. 1–12.

Elbruz Ozen is pursuing a PhD with the Univer-
sity of California at San Diego, La Jolla, CA 92093
USA. His research interests focus on robust and
resource-efficient hardware architectures for machine
intelligence. Ozen has an MS in computer engineer-
ing from the University of California at San Diego. He
is a Graduate Student Member of IEEE.

Alex Orailoglu is a professor of computer sci-
ence and engineering at the University of California
at San Diego, La Jolla, CA 92093 USA. His research
centers on the establishment of robust and reliable
computational structures. Orailoglu has a PhD in
computer science from the University of Illinois at
Urbana–Champaign, Urbana–Champaign, IL, USA.
He is a Golden Core Life Member of IEEE.

 Direct questions and comments about this article to
Elbruz Ozen, Department of Computer Science and
Engineering, University of California at San Diego, La
Jolla, CA 92093 USA; elozen@eng.ucsd.edu.

mailto:elozen@eng.ucsd.edu

672168-2364/22©2022 IEEECopublished by the IEEE CEDA, IEEE CASS, IEEE SSCS, and TTTCMarch/April 2023

Fault-Tolerant Neural
Network Accelerators
With Selective TMR

 The fasT growTh of novel embedded heter-
ogeneous architectures in the last decade opened
doors to machine learning acceleration targeting
various fields and applications, some of which are
categorized as safety-critical, such as self-driving
cars, flight-control systems, or aerospace. The super-
vision and diagnosis of faults in these kinds of appli-
cations are of great importance to prevent malfunc-
tions or total system failure, hence requiring a high
level of reliability.

A common approach to achieving fault tolerance
in hardware is the use of triple modular redundancy
(TMR), performing a majority vote on triplicated
modules. However, machine-learning accelerators
are extremely power- and resource-hungry, making
TMR an undesirable solution, due to a 200% hardware
overhead. It should also be considered that not all por-
tions of a neural network (NN) have the same effect
on the overall accuracy, thus exploring in detail the

inherent feature of NNs
enables more fine-grained
approaches. In this work,
we explore applying
redundancy only to the
most critical elements
within the NN hardware

accelerator, opening a new design space exploration
to reduce resource usage while offering a certain
degree of fault tolerance.

This article presents selective TMR (STMR), an
automated tool to export fault-tolerant NNs using
field-programmable gate array (FPGA)-based hard-
ware. The main features of this tool are:

• It applies redundancy to computations that, in the
presence of single faults, have a greater impact on
the overall accuracy of the network, achieving a
fault tolerance for a highly reduced hardware cost.

• It preserves the throughput of the NN accelerator,
with a negligible increase in latency.

• It offers configurable fault tolerance by setting a
minimum requirement of accuracy in the pres-
ence of a single fault, providing control over the
degree of redundancy applied to the NN.

• It provides layer-level information on single-fault
detection to the host, for further fault correction
at the system level (e.g., scrubbing).

The following sections introduce related work
and required background leading to an STMR

Digital Object Identifier 10.1109/MDAT.2022.3174181

Date of publication: 11 May 2022; date of current version:

10 March 2023.

Timoteo García Bertoa

Xilinx Research Labs, Dublin, Ireland
Queen’s University Belfast, Belfast BT7 1NN, U.K.

Giulio Gambardella, Nicholas J. Fraser, and
Michaela Blott
Xilinx Research Labs, Dublin, Ireland

John McAllister
Queen’s University Belfast
Belfast BT7 1NN, U.K.

Editor’s notes:
This article presents a tool that analyzes sensitive computations in the
neural network and triplicates them to increase the functional safety of the
neural network accelerator.

—Fei Su, Intel Corporation

68 IEEE Design&Test

Testability and Dependability of Artificial Intelligence Hardware

model, an explanation of the tool flow, and detailed
analysis based on a use case.

Related work
Prior works aiming to improve the reliability of

NN inference fall into the following categories:

1) Hardware redundancy, such as TMR.

2) Numerical redundancy, such as error correc-
tion code (ECC) and algorithm-based fault
tolerance (ABFT).

3) NN training for robustness, such as fault-
aware training (FAT) [1].

These approaches are often used in combination
to create a reliable system. The approach described
in this article is a variant on 1), while presenting
results when 3) is also applied. However, before dis-
cussing prior works’ methods to improve the robust-
ness of NN accelerators, it is worthwhile to review
works that attempt to analyze the reliability of NNs
without any particular fault mitigation techniques
being applied.

In particular, Gambardella et al. [2] presented an
error injection methodology to evaluate fault toler-
ance in NNs. They observed that single faults onto
single neurons at specific locations in convolutional
layers can cause accuracy drops of up to 10%. To
mitigate this, the authors propose an STMR scheme
and provide an analysis of potential resultant relia-
bility and hardware cost based on models. Similarly,
Libano et al. [3] explored how the reliability of NN
accelerators changes with various network and
accelerator parameters. They show that reliability
improves with reduced data precision and increased
parallelism. More recently, Xu et al. [4] analyzed
the probability of system exceptions of FPGA-based
accelerators due to hardware faults. The authors
found that system exceptions can dominate the
reliability of the system and evaluated full TMR as
a potential solution. In addition to the works above,
Brosser et al. [5] showed that periodic scrubbing
(reprogramming) is vitally important when FPGAs
are deployed in low earth orbit (LEO) or geostation-
ary earth orbit (GEO) satellites.

Closer to this work, several works have pro-
posed methods to apply full or partial TMR to NN
accelerators. For example, Wang et al. [6] imple-
mented full TMR on a custom lightweight con-
volutional NN (CNN) topology. Their approach
significantly improved the error rate (33.59% error

rate reduction) although they incur a large increase
in hardware resources. As an example of partial
TMR, Libano et al. [7] proposed selective hardening,
where they triplicated the most sensitive layers and
validated the approach by means of neutron radia-
tion testing, showing high fault-masking (40%) with
marginal hardware overhead (8%). SHIELDeNN [8]
also proposed a framework applying partial TMR to
the weights within sensitive NN layers. The authors
showed an improvement in error resilience while
incurring only a little hardware overhead. Finally,
Spyrou et al. [9] employed both partial TMR (to the
output layer of the NN) and a training technique to
improve the robustness of spiking NNs (SNNs).

Zhao et al. [10] is an example of ABFT. The
authors proposed four different ABFT schemes that
protect against single-event effects (SEEs) in con-
volutional layers. Together, the schemes provide
effective fault tolerance, while incurring little (8%)
runtime overhead.

In this work, we propose fault-tolerant NN accel-
erators leveraging parallelism using FPGAs for
acceleration (as per suggested in [3]), targeting
convolutional layers (as [10]), targeting reduced
hardware overhead (as suggested in [4] and [6]),
and applying partial TMR as in [7]–[9], but with a
finer-grained approach to selective hardening or
SHIELDeNN, as we analyze and triplicate individual
channels within a layer, instead of the entire layer.
This work could be considered to be an extension
of Gambardella et al. [2], developing the ideas pro-
posed in the work into a tool, which generates relia-
ble accelerators.

Background
STMR builds on three main prior works:

1) FINN [11]; 2) error injection [2]; and 3) FAT [1].
In particular, we utilize the error injection campaign
proposed by Gambardella et al. [2] with the specific
aim to identify sensitive computations within the
NN. We also extend FINN to support detecting and
correcting single faults on selected output channels.
Finally, we leverage FAT to compare the effective-
ness of STMR on quantized NNs (QNNs) which are
trained to be resilient to faults to networks trained
with standard training (SAT) techniques.

FINN framework
FINN [11] is an end-to-end framework that enables

the deployment of QNNs into FPGA-based hardware

69March/April 2023

platforms, especially focusing on extremely reduced
precisions down to binary NNs (BNNs), leveraging
heavily quantized weights and activations enabling
their storage into on-chip memory and reducing the
compute hardware cost. The architecture of machine
learning accelerators built using FINN consists of a
sequence of layers with dedicated processing ele-
ments (PEs), offering a high level of configurability
to target-specific throughput for a submicrosecond
latency. The FINN toolchain allows generating data-
flow architectures configured for different low preci-
sions, network topologies, or data sets.

For the scope of STMR, it is important to remark
that FINN-based accelerators can be deployed onto
FPGAs without an accompanying CPU, thus requir-
ing redundancy to be implemented during inference
rather than at the algorithmic level. For TMR imple-
mentation in FINN, special attention is put on the
structure of the convolutional layer.

Each convolutional layer in FINN receives an input
feature map (IFM) and produces an output feature
map (OFM). The IFM is first transformed into an input
matrix by a sliding window unit (SWU), which lowers
the convolution to a matrix multiplication on the fly, by
means of im2col. From here, the matrix multiplication
is mapped to the main computational primitive in FINN:
the matrix-vector threshold unit (MVTU). The MVTU
calculates matrix-vector products, and the subsequent
quantized activations by means of thresholding.

The OFM number of channels (COFM) for each
layer is determined by the number of filters used
during convolution, and the level of parallelism to
compute simultaneous OFM channels is determined
by the number of PEs utilized within the layer. If
the number of PEs, NPE, is less than the number of
OFM channels, that is, NPE < COFM, then each PE com-
putes multiple output channels. The amount of OFM
channels each PE computes is known as the neuron
folding factor and is given by Fn = COFM/NPE, where
COFM%NPE = 0. The specific channels that the ith PE in
the MVTU computes are given by

 CPEi = (i + j N PE) j = 0,..., Fn ¯ 1
. (1)

This property plays an important role in determin-
ing the schedule described in the following section.

Error injection methodology
Error injection is crucial to understanding how the

NN behaves in the presence of faults and how differ-
ent faults impact the overall accuracy. Gambardella

et al. [2] presented an error injection methodology
to evaluate the fault tolerance of NNs. This method
consists of altering threshold values utilized in the
MVTU at run time and injecting activation values in
the next layer. For instance, if thresholds are set to
a maximum or minimum value for a single channel
of a layer in a BNN, the corresponding activations
are forced to a permanent value of 0 or 1. Evaluating
different channels and layers in each iteration, the
overall accuracy of the network is computed and
reported, obtaining information on the sensitivity
against single faults for all targeted error models. It is
worth noticing how the sensitivity analysis is specific
to a trained NN, and a new evaluation is needed if
the same NN is retrained or if the topology changed.
This error injection methodology was adopted to
apply the channel stuck at the error model to obtain
channel fault tolerance analysis reports. For those
readers who wish to further understand the error
model and error injection framework, we refer them
to Gambardella et al. [2].

FAT for reliable inference
The STMR approach presented in this article is

independent of the process of training NNs. How-
ever, the selection of the most critical portion of the
NN to be triplicated heavily depends on the trained
parameters and the results of the error injection.

In this context, the FAT methodology proposed by
Zahid et al. [1] introduces a new error injection layer
component in the network definition, enabling error
models to be utilized as a part of the training pro-
cess. The use of FAT for training improves the resil-
ience of the network, proving greater tolerance than
networks trained with SAT techniques for different
error models and precisions, with higher error-free
accuracy and higher minimum accuracy in the pres-
ence of faults. In this article, the use-case shown con-
siders the utilization of trained parameters obtained
using both SAT and FAT methodologies, to assess
the implications of the training methodology to the
hardware resource usage of the STMR accelerator.
However, FAT is not a requirement for STMR, but
rather an additional resource to seek fault tolerance.

STMR modeling

TMR mapping
The mapping of convolution computations to the

MVTU in FINN is output stationery, meaning that each

70 IEEE Design&Test

Testability and Dependability of Artificial Intelligence Hardware

PE computes all outputs on one or more entire chan-
nels in an OFM. In the case where a PE calculates
more than one output channel, it is imperative that
each triplicated channel in a triplet is calculated on
a separate PE, to avoid a single point of failure. This
is achieved in STMR by ensuring that the replicated
channels in the triplet are each mapped to a unique
PE, assuming there are three or more PEs. Specifically,
this is achieved by placing the replicated channels
immediately after the position of the original channel.
This is shown in Figure 1a, where three of the six chan-
nels (in positions 0, 2, and 4) are identified as being
sensitive to faults. After STMR mapping, the number of
channels increases to 12, where channel 0 turns into
a triplet of channels in positions 0, 1, and 2; channel 2
into a triplet with positions 4, 5, and 6; and channel 4
into a triplet with positions 8, 9, and 10.

TMR majority vote
The majority vote is implemented by an additional

hardware component placed right after the MVTU
or convolutional layer in FINN, named TMR check
(TMRC). TMRC receives an OFM with triplicated chan-
nels as input and outputs an OFM with valid results,
as well as providing status information to the host
through two flags: 1) an error-detected flag and 2) an
error-corrected flag. In essence, this unit performs a
comparison for each triplet. Three possible scenarios
could occur during the process, each case represented
in Figure 1b with triplets T1, T2, and T3, respectively:

• All three channels are identical. In this situation,
the result is assumed as valid and forwarded to
the output, with no errors flagged.

• Two channels are identical and one has a dif-
ferent value. In this situation, the value present
twice is considered valid and forwarded to the
output, thus detecting and tolerating the single
error. The error-detected and error-corrected
flags are also raised.

• All three channels are different. In this situa-
tion, the result of the first channel is selected by
default as valid and forwarded to the output. The
error-detected flag is raised, but the error-cor-
rected flag is not.

Additionally, TMRC is configurable to define
input and activation precisions, the number of trip-
licated channels, OFM dimensions, or redundancy
factor, assumed as three in this work.

STMR tool flow
The STMR tool aims to automatically generate a

hardware accelerator that achieves the desired level
of single-fault tolerance.

To do so, our codesign flow first triplicates param-
eters of explored sensitive channels of each layer
(software), second mapping these, leveraging high-
level synthesis (HLS) for the model transformations
(hardware). This redefines the NN model, with the
advantage of computation-level redundancy for a
low cost in resources.

As illustrated in Figure 2, the tool requires as input:

• Trained parameters, including the complete NN
topology definition. It should be noted how there
is no restriction on the training methodology
adopted, and training is completely independent
of STMR implementation.

Figure 1. STMR mapping and majority vote. (a) TMR PE mapping: critical channels
0, 2, and 4 are triplicated, placing replicas in a consecutive manner. Red
represents critical channels. (b) STMR majority vote for each triplet (T1, T2, T3).
Green represents expected values (same for each triplet), whereas orange and
blue represent non-expected values (possibly due to faults).

71March/April 2023

• A sensitivity report, as a result of the error injec-
tion campaign described in the previous section
performed on the target NN.

• A minimum accuracy requirement in the pres-
ence of single faults, which the user can specify
depending on the target fault tolerance require-
ment. Redundancy is regulated as a consequence
of minimum accuracy choice, which aims to act
as a fault-tolerance guarantee, limited by the
FPGA capacity.

Given the inputs, an automated process exports
the fault-tolerant NN accelerator, relying on a series
of Python scripts included in FINN and the HLS
library which leverage the Xilinx toolchain to build
and produce the final hardware accelerator. Figure 2
illustrates the steps of this process, which starts with
a Python-based three-step procedure:

• Analysis of the sensitivity report obtained from the
error injection stage, selecting which channels of
each layer will be triplicated based on the required
minimum accuracy in the presence of faults.

• Validation of the parallelism, namely the number
of PEs used for each layer of the network, ensures
the TMR mapping described in the previous sec-
tion is viable for the list of critical channels previ-
ously selected.

• Automatic export of the weights and parameters,
including the triplication of the values corre-
sponding to each triplicated channel.

The process continues with the generation of the
QNN accelerator itself. The FINN HLS components
are generated for all layers within the network, with
some layers augmented with triplicated channels
and a TMRC layer (described in the previous sec-
tion) placed after them. Once the HLS is generated
for the fault-tolerant network, Vivado HLS synthe-
sizes it, exporting an intellectual property (IP) block
which can be integrated and built within a block
design in Vivado.

Fault-tolerant networks with STMR
The STMR tool has been tested and validated

on a set of QNNs inspired by BinaryNet [12], which
consists of six convolutional layers, two max pool
layers, and three fully connected layers, is called
CNV and first proposed by Umuroglu et al. [11].
The CNNs have been trained on the CIFAR-10 data
set [13] to classify images among 10 classes with

reduced precisions and are referred to as CNVW1A1,
CNVW1A2, or CNVW2A2, where the number after W
and A are the bitwidths of weights and activations,
respectively.

STMR use-case
Let us consider an SAT-trained CNVW1A1 network

whose computed error-free accuracy is 84.46%. The
results of the error injection campaign performed
over this network to analyze its fault sensitivity are
collected in Table 1, where clearly the convolu-
tional layers (0–5) experience a higher accuracy
drop when compared to the fully connected layers
(6 and 7). More specifically, layer 1 experiences a
minimum accuracy of 59.28% when a single channel
was stuck at 1.

Setting the STMR minimum accuracy requirement
to 83% and using the automated flow to generate a
fault-tolerant accelerator, it requires 16, 50, 92, 56,
and 7 triplicated channels in the first five convolu-
tional layers. This leads to a total of 221 triplications
(≈12% of the total channels in the network) and the
implementation of one TMRC layer per each convo-
lutional layer containing redundancy.

The same CNVW1A1 network trained using FAT
gives a computed error-free accuracy of 84.8%. The
minimum accuracy observed during error injection
is 81.08%. Targeting 83% minimum accuracy, the
STMR tool exports a fault-tolerant NN with only 1, 36,

Figure 2. General overview of STMR tool flow.

72 IEEE Design&Test

Testability and Dependability of Artificial Intelligence Hardware

2, and 6 triplicated channels in the first four convolu-
tional layers, respectively, for a total of 45 triplicated
channels (≈2% of the total).

These results show a greater benefit when train-
ing the network using FAT, reducing considerably
the redundancy required for the same minimum
accuracy target.

Identical steps were followed to perform error
injection and export CNV networks with other accu-
racy requirements and precisions, whose cost in
hardware will be addressed in the following sections.

Validation, throughput, and latency
To validate the functionality of STMR, an error

injection campaign was performed into STMR-ex-
ported networks. The campaign consists of inject-
ing errors to each individual channel of each layer,
including the triplicated ones which will be treated
exactly like the original. The campaign aims at con-
firming that the triplication performed by the STMR
tool and implemented in the hardware accelerator
is able to guarantee error-free accuracy in the pres-
ence of faults in one of the triplicated channels.
When injecting single faults into such channels, the
majority vote will tolerate the fault and the com-
puted accuracy will be equal to the error-free accu-
racy, while the error detection and error correction
flags will be raised by the hardware accelerator.

For instance, the result of this error injection cam-
paign for the network example in the previous sec-
tion, which had implemented STMR for a minimum
accuracy of 83%, is shown in Table 1, where, com-
pared to the error injection results, clearly the mini-
mum accuracy for the first five convolutional layers

is kept above the 83% threshold, thus validating the
STMR implementation.

The parallelism of STMR networks cannot be
exactly preserved, as the number of PEs varies
depending on the number of triplications and folding
requirements as explained in the previous section.
However, having control over the parallelism for
each convolutional layer for the previous example, a
throughput of ≈21 k frames/s is preserved for both SAT
and FAT trained networks, while leveraging the ben-
efits of STMR. Latency experiences a slight increase
due to the inclusion of TMRC layers in the network.
This increase is negligible, as TMRC has been fully
unrolled to perform majority vote for one pixel in
one clock cycle. In the case of SAT-STMR-CNVW1A1,
the addition of 221 triplications produces a latency
increase from 142.3 to 145.2 µs, whereas the addition
of 45 triplications for the FAT-STMRCNVW1A1 case
causes an increase from 142.3 to 143.3 µs.

Hardware resource analysis
Area savings of STMR is one of the key reasons

and motivations of this research, enabling design-
ers to explore the design space of hardware usage
versus fault tolerance. The hardware usage increase
when applying STMR to a FINN accelerator can be
divided into two main components: 1) majority voter
(TMRC) and 2) increased PEs to compute triplicated
channels. TMRC only requires look-up tables (LUTs)
and flip-flops (FFs), with resource usage linearly
dependent on activation precision and number of
OFM channels (including triplications).

In all our examples, the resource usage of
TMRC was less than <7.5% of the resources of the

Table 1. Error injection campaign and STMR validation for 83% minimum accuracy.

73March/April 2023

corresponding MVTU. Compared to the resource
overhead of triplicating several OFM channels, this
is relatively low.

The majority of hardware cost increase depends
on the compute part as well as BRAM usage increase
due to partial triplication of parameters. Consider-
ing as baseline the CNVW1A1 example, LUTs, FFs,
and 36-kb BRAM utilization are 45.8 k, 60.6 k, and
147.5, respectively. Hence, a full TMR solution would
require ≥137.4 k LUTs, ≥181.9 k FFs, and ≥442.5
BRAMs. However, if we leverage the STMR tool to
export a fault-tolerant CNVW1A1 network trained
using SAT targeting a minimum accuracy of 83% in
the presence of faults, resource utilization is 71.5 k
LUTs, 91.9 k FFs, and 210.5 BRAMs. This means an
additional cost of 56% in LUTs, compared to the the-
oretical ≥200% for full TMR, while guaranteeing a
maximum drop in accuracy of <1.5%, increasing by
23.72% the minimum accuracy under single faults.

When using the FAT trained NN with the same
target accuracy in the presence of faults, we experi-
enced a resource utilization of 55.2 k LUTs and 70.5 k
FFs, resulting in increased utilization of 21% in LUTs,
compared to the theoretical ≥200% for full TMR and
56% for SAT-STMR. Additionally, optimization of
BRAM utilization mapped to LUTs used as memory
is also leveraged by the synthesis tools, as in this case
only 147.5 BRAMs were utilized.

The full set of results is collected in Table 2, pre-
senting the overall hardware cost for CNVW1A1,
CNVW1A2, and CNVW2A2 accelerators imple-
mented with STMR. The target accuracy drop in
the presence of single faults has been set to be less
than 2% for all precisions, and the results have been

reported using both SAT and FAT training method-
ologies. The reader can observe great area savings
when comparing the hardware cost of a full TMR
approach versus the STMR solution proposed. Also,
it can be observed that the error-free accuracy and
hardware cost increase with higher precisions.

The complete design space of hardware cost ver-
sus worst-case classification error (i.e., 1—minimum
accuracy under a single fault) against utilization in
LUTs is shown in Figure 3, where full TMR solutions
marked in the graph clearly offer the minimum worst-
case error, but for the maximum hardware cost, and
solutions without redundancy show a high worst
error case which does not guarantee high levels of
accuracy in the presence of faults. The intermediate
results define the design space for STMR fault-toler-
ant solutions considering different minimum accu-
racy requirements, where the hardware cost is highly
reduced. The most attractive solutions shown in this
figure respond to the intermediate data points for
FATSTMR-CNVW1A1, FAT-STMR-CNVW1A2, and
FAT-STMRCNVW2A2 generated networks, being all
Pareto dominant to the SAT counterparts.

In this work, we presented STMR, an automated
tool to generate fault-tolerant NNs for machine-learn-
ing accelerators in FPGAs. It offers flexibility to
tradeoff between fault tolerance and hardware cost
by applying TMR only to critical channels of the NN
layers, previously identified by means of error injec-
tion. The fault-tolerant accelerators automatically
generated preserve their throughput and incur in
very low latency increase. Additionally, experiments
show how FAT in conjunction with STMR provides
higher benefits than SAT-trained NNs.

Table 2. STMR hardware cost when targeting <2% accuracy drop and throughput of 21 k frames/s.

74 IEEE Design&Test

Testability and Dependability of Artificial Intelligence Hardware

for fuTure work, we plan to: validate the STMR
approach under high-radiation environments;
develop robust training methods that are specific to
STMR, in particular, methods that extend FAT to sup-
port a small number of outliers; and finally, extend
the STMR tool flow to support more NN layer types,
such as long short-term memories (LSTMs).

 References
 [1] U. Zahid et al., “FAT: Training neural networks for

reliable inference under hardware faults,” in Proc. IEEE

Int. Test Conf. (ITC), Nov. 2020, pp. 1–10.

 [2] G. Gambardella et al., “Efficient error-tolerant

quantized neural network accelerators,” in Proc. IEEE

Int. Symp. Defect Fault Tolerance VLSI Nanotechnol.

Syst. (DFT), Oct. 2019, pp. 1–6.

 [3] F. Libano et al., “How reduced data precision

and degree of parallelism impact the reliability of

convolutional neural networks on FPGAs,” IEEE Trans.

Nucl. Sci., vol. 68, no. 5, pp. 865–872, May 2021.

 [4] D. Xu et al., “Reliability evaluation and analysis of

FPGA-based neural network acceleration system,”

IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,

vol. 29, no. 3, pp. 472–484, Mar. 2021.

 [5] F. Brosser et al., “Assessing scrubbing techniques for

Xilinx SRAM-based FPGAs in space applications,” in

Proc. Int. Conf. Field-Program. Technol. (FPT),

Dec. 2014, pp. 296–299.

 [6] H.-B. Wang et al., “Impact of single-event upsets on

convolutional neural networks in Xilinx Zynq FPGAs,”

IEEE Trans. Nucl. Sci., vol. 68, no. 4, pp. 394–401,

Apr. 2021.

 [7] F. Libano et al., “Selective hardening for neural

networks in FPGAs,” IEEE Trans. Nucl. Sci., vol. 66,

no. 1, pp. 216–222, Jan. 2019.

 [8] N. Khoshavi et al., “SHIELDeNN: Online accelerated

framework for fault-tolerant deep neural network

architectures,” in Proc. 57th ACM/IEEE Design Autom.

Conf. (DAC), Jul. 2020, pp. 1–6.

 [9] T. Spyrou et al., “Neuron fault tolerance in spiking

neural networks,” in Proc. Design, Autom. Test Eur.

Conf. Exhib. (DATE), Feb. 2021, pp. 743–748.

 [10] K. Zhao et al., “FT-CNN: Algorithm-based fault

tolerance for convolutional neural networks,” IEEE

Trans. Parallel Distrib. Syst., vol. 32, no. 7,

pp. 1677–1689, Jul. 2021.

 [11] Y. Umuroglu et al., “FINN: A framework for fast,

scalable binarized neural network inference,” in Proc.

FPGA, 2016, pp. 65–74.

 [12] I. Hubara et al., “Binarized neural networks,” in

Advances in Neural Information Processing Systems,

vol. 29, D. Lee et al., Eds. Red Hook, NY, USA: Curran

Associates, 2016.

 [13] A. Krizhevsky and G. Hinton, “Learning multiple

layers of features from tiny images,” M.S. thesis, Dept.

Comput. Sci., Univ. Toronto, Toronto, ON, Canada,

2009.

Figure 3. Design space of worst-case error versus
hardware cost for CNVW1A1, CNVW1A2, and
CNVW2A2 with the throughput of ≈21 k frames/s.

 Direct questions and comments about this article
to Giulio Gambardella, Xilinx Research Labs, Dublin,
Ireland; giuliog@xilinx.com.

752168-2364/22©2022 IEEECopublished by the IEEE CEDA, IEEE CASS, IEEE SSCS, and TTTCMarch/April 2023

API-Based Hardware
Fault Simulation for DNN
Accelerators

 Continued transistor sCaling results in lower
operating voltages that enable increased levels of inte-
gration within a given silicon area footprint. However,
it also entails an increase in the likelihood of unin-
tended bit flips and data corruption at the device level.

The rate of these faults per computational
resource requires special consideration when

• combining many computational resources (e.g.,
supercomputers and server farms) and

• executing applications with high dependability
requirements, such as in automotive (requir-
ing failure rates below 10−8 failures/hour for
safety-critical functions).

To reduce the likelihood of data corruption, hard-
ware designers identify high-risk components and
add protection circuitry, such as parity checks and
error correction codes (ECCs). However, protection
circuitry requires die area and increases power con-
sumption which could otherwise be used to increase

performance. The more

comprehensive the pro-

tection, the higher the

error detection or correc-

tion capabilities, but the

more area it occupies.

A balance must be

found in the tradeoff between an integrated circuit’s

dependability and performance. Experiments indicate

that deep neural networks (DNNs) are more resilient to

hardware faults than other programs.1 In this context,

special “DNN accelerators” have been designed for effi-

cient DNN execution [3]. These may require lower than

usual levels of hardware protection while satisfying the

same dependability targets for DNN applications.

So what is the probability of output failure due to

hardware faults for DNNs running on these DNN accel-

erators? In this work, we present a novel method for

estimating this probability. Our approach works by

expanding the primitives of application program inter-

faces (APIs) used by DNNs with hardware-specific fault

simulations: First, the original primitive is run, then the

output is modified in the way it would be corrupted due

to faults in the target hardware. The actual hardware is

not required. By executing a DNN with this modified

API simulating hardware faults, statistics may be gen-

erated on output failures. Unlike existing approaches,

our approach uniquely combines.

1Compare bit error rate thresholds found in [1] with requirements in [2].

Digital Object Identifier 10.1109/MDAT.2022.3180977

Date of publication: 8 June 2022 ; date of current version:

10 March 2023.

Patrik Omland, Yang Peng, and
Michael Paulitsch
Dependability Research Laboratory
Intel Deutschland GmbH
85579 Neubiberg, Germany

Jorge Parra, Gustavo Espinosa, and
Abishai Daniel
Intel Corporation, Santa Clara, CA 95054 USA

Editor’s notes:
This article presents an application program interface (API)-based
hardware fault simulation method to investigate the effect of hardware
faults on the failure probability of deep neural network (DNN) accelerators.

—Fei Su, Intel Corporation

Gereon Hinz
STTech
82031 Grünwald, Germany

Alois Knoll
Department of Informatics
Technical University Munich
85748 Munich, Germany

76 IEEE Design&Test

Testability and Dependability of Artificial Intelligence Hardware

• Accuracy: The actual workload is run on an accu-

rate hardware fault simulation.

• Speed: The simulation time is not constrained

by the lack of nor the speed of hardware to be

simulated.

• Scale: By sharing the modified API implementa-

tion, accurate dependability estimates for specific

workloads may be generated without hardware/

algorithmic knowledge.

DNN accelerators
Computing platforms tailored specifically to the

needs of DNNs have become more common over

the past years. Prominent examples are Google Ten-

sor Processing Units, Nvidia Tensor Cores, Intel Xeon

Tile Matrix Multiply Units, and Intel Xe HPC graphics

processing units (GPUs) [3].

By far, most computer operations carried out by

DNNs are spent on matrix multiplication: In DNN

terminology, the fully connected and convolution

layers are calculated by algorithms using matrix

multiplication.2 For DNNs such as ResNet-50, these

multiplications involve large matrices with dimen-

sions, n, in the thousands. Matrix multiplication is,

approximately, an O(n3) operation. All other com-

monly used DNN operations are O(n) operations.

Consequently, accelerators geared toward DNNs

specifically aim to accelerate large matrix multipli-

cations. Most of them

• adopt an architecture that consists of systolic

arrays (SAs) operating in parallel and

• feature a memory hierarchy designed to maxi-

mize the reuse of data cached close to the SAs,

2Chetlur et al. [4] explain how to convert convolution to matrix multiplication.

where each SA computes small matrix-multiply-ac-
cumulate (MMA) operations, D = A • B + C.

We will refer to this class of accelerators as “DNN
accelerators.” The typical architecture of a DNN
accelerator is shown in Figure 1. The white blocks
inside the SA represent multiply-accumulate-fused
(MAF) units, performing the actual calculations.

When designing DNN accelerators, the relative
robustness of DNNs with reference to hardware
faults is taken advantage of by optimizing the level of
hardware protection for performance gains. In this
context, SAs and their caches present particularly
good opportunities for such gains.

Protection circuitry for large caches (L4–L2 in
Figure 1) requires relatively little die area. In com-
parison, the SA caches (L1 in Figure 1) are very small
and there may be thousands of them—here, protec-
tion carries a high-performance cost. Analogously,
while an ALU on the “slice level” in Figure 1 may be
implemented with hardware protection, doing the
same for each of the dozens of MAF units comprising
a single SA places a large burden on performance.

Related work
Many methods of estimating the likelihood of pro-

gram failure due to hardware faults exist. Below, we
present the most prominent ones.

Statistical fault injection
In statistical fault injection, faults are injected at

program runtime. These faults may be injected at
different system abstraction levels (gate, microar-
chitecture, and so on). In general, lower-level fault
injection provides more accurate results but may not
be scalable in practice due to long execution times,
while higher-level fault injection may run much
faster, but at the price of lower accuracy [5].

Figure 1. Typical architecture of a DNN accelerator. Memory hierarchy depth (L4–L1)
and the number of units on each level (4, 8, 16) chosen arbitrarily.

77March/April 2023

Hierarchical simulations have been applied to
address this tradeoff by simulating different parts
of the system at different abstraction levels so that
required details are modeled only for the parts of
interest [5]. The proposed method in this work fol-
lows a similar concept as hierarchical simulations.

Vulnerability factors
In the vulnerability factor approach, simulat-

ing lower system abstraction levels individually for
each program is avoided by estimating the fraction
of faults affecting a given level from the next lower
level. Frequently used factors are the hardware vul-
nerability factor (HVF) [6], the program vulnera-
bility factor (PVF) [7], and the timing vulnerability
factor (TVF) [8]. The overall failure rate for a pro-
gram, P, is then estimated by (1), where F denotes
the fraction of time in a particular use condition, uc,
itself dependent on the clock frequency, fclk

Failure Rate Fault-Rate

TVF

clk
circuits

() ,P F fuc P

uc

c

c

u

≈ () ⋅

⋅

∑ ∑
∈

cc c uc c uc c P, , , ,⋅ ⋅HVF PVF (1)

However, not much is gained if PVFuc,c,P has to
be estimated individually for each DNN, each use
condition, and each circuit.3 As will be shown in the
upcoming section, hierarchical fault injection simu-
lations not only deliver more accuracy, but may be
implemented in a general, scalable fashion.

Evaluating vulnerability of DNN-based
applications

To understand the vulnerability of DNN-based
applications, many existing works (e.g., [1] and [9])
adopt application-level fault injection by, say, inject-
ing faults directly into the DNN model (e.g., weights).
However, this approach does not reflect the actual
impact of the underlying platform on which the DNN
is executed. As will be shown in the upcoming sec-
tion, microarchitectural details of DNN accelerator
designs have a profound impact on how hardware
faults propagate to the level of the DNN model.

Problem statement
The task at hand is a risk assessment for DNNs

when facing hardware faults on DNN accelerators.

3For many central processing unit (CPU) applications, the approximation PVFuc,c,p
≈ 1 may be used, making this approach useful for rough estimates. However, in this
work, we are particularly interested in the PVFuc,c,p << 1 property of DNNs.

.

Generally, given a program, p, the risk of a hardware
fault, f, causing failure with severity ∈ {0 = none,
1, ...}, may be defined as

 risk severity severity= () ⋅Pr f p, (2)

commonly known as the risk matrix approach, where
shorthand Pr denotes probability.

The probability on the right-hand side of (2) may
be separated into two parts

 Pr Pr Pr
exposure cond

f p f p f p, ,severity severity() = () ⋅ ()��� ��
iitional failure

� ���� ����

 (3)

The “exposure probability” measures the likeli-
hood of the fault, f, occurring while a given program,
p, is exposed to it. For instance, if a program makes
no use of floats, and the hardware fault considered is
a fault in an floating-point unit (FPU), the program’s
exposure probability to that fault equals zero.

The “conditional failure probability” measures
the likelihood of the program, p, failing with sever-
ity, conditional on it being exposed to a fault, f. For
instance, if the program’s output is a single-pre-
cision floating-point value and the fault only ever
flips the least significant bit of that value, the rel-
ative output error equals 2−23: For most programs,
this error will not be considered program failure, so
the associated conditional failure probability would
equal zero.

As calculating the risk using (2) becomes trivial
once the failure probability (3) has been estimated,
moving forward, we only consider the latter problem.

Novel API-based fault simulation
Numerical programs, in particular, DNNs, rely on

standards-based APIs to implement mathematical
operations such as matrix multiplication. The actual
operation is usually implemented by the hardware
manufacturer, requiring intimate knowledge of the
accelerator’s memory hierarchy, instruction pipe-
lining, and so on. In the proposed approach, hard-
ware fault simulations are implemented into these
APIs for the very same reason. Also, fault simulations
thus implemented become available immediately to
every program linking the given API.

.

78 IEEE Design&Test

Testability and Dependability of Artificial Intelligence Hardware

The proposed API-based fault simulation for a
given API comprises the following steps: For each
API operation executed on the accelerator

1) Model of computation (MoC): Develop an MoC,
modeling how the operation is executed on the
actual hardware.

2) Fault MoC-scope: For the hardware fault under
consideration, find the execution steps affected
in the MoC by one such fault.

3) API fault simulation: Develop a fault simulation for
these execution steps making as much use of the
API operation’s (efficiently computed) output as
possible and including the simulation with the
API operation.

Without loss of generality, we provide a sample
application with a simplified MoC, following the steps
outlined above, to illustrate the proposed method.

Simplified model of computation
We implement the fictitious general matrix multi-

ply API function GEMM16 (A, B) = A16 × 16 • B16 × 16, on
a DNN accelerator featuring four SAs. Each SA itself
may execute an MMA instruction, A4 × 4 • B4 × 4 + C4 × 4.
The generalization to arbitrary dimensions and the
number of SAs is straightforward.

The multiplication is depicted in Figure 2. The 16
submatrices Cmn

4 × 4 may be calculated by

 C A Bmn mk

k

k

kn
4 4 4 4

0

4
4 4× ×

=

<

×
=∑ (4).

The GEMM16 algorithm using MMA instructions
is given by Algorithm 1. It divides C into quadrants,
each assigned one SA (see Figure 2).

Unrolling the m, n loops for the upper right quad-
rant we get

1 for k = 0 to 3 do
2 C A B Ck k02 1 0 2 02= ()MMA , ,

3 C A B Ck k03 1 0 3 03= ()MMA , ,

4 C A B Ck k12 1 1 2 12= ()MMA , ,

5 C A B Ck k13 1 1 3 13= ()MMA , , .
Notice that each k-iteration requires only four

different A and B inputs, namely A0k, A1k, Bk2, and
Bk3. Now, consider the memory hierarchy in Figure
1: For L1A (L1B) large enough to cache one (two)
4 × 4-submatrices, data requests to L2 for these inputs
are halved.4 Moving forward we assume just that.

Simulating transient L1 cache faults
Suppose one of the L1 caches of the upper right

quadrant’s SA experiences a transient bit-flip—what
is the fault’s MoC-scope? From the unrolled loop
above, we see that any such fault is confined to one
k-iteration (data is not reused across k-iterations)
and affects at most two Cmn (e.g., if B12 is corrupted
in line 2, it affects C02 and then C12 in line 4).

Next, we develop the API fault simulation. In the
unrolled loop above, suppose the fault occurs at iter-
ation k = 2: line 4 and has the effect B B23 23� � . The
corresponding effect on the output, C C� �, reads

 � �C C A B A B12 12 1 12 23 1 12 230 0= − +MMA MMA(, ,) (, ,)

As C12 is returned by the regular API operation, we
do not need to calculate it ourselves but can utilize

4For real-world DNN accelerators with M × K × N-MMA: If L1A caches a single
M × K-submatrix and L1B caches Lb K × N-submatrices, each SA may be assigned
Lb × Lb M × N-submatrices in the output to reduce L2-requests for A, B by a factor of
1/Lb using Algorithm 1.

.

Figure 2. Matrix multiplication on DNN
accelerators.

Algorithm 1. GEMM16: returns A16 × 16 • B16 × 16 using
four SAs capable of A4 × 4 • B4 × 4 + C4 × 4-MMA

79March/April 2023

the high-performance API implementation as input
to the simulation.

More generally, the effect of a cache fault occur-
ring in SA, at iteration (k, m, n) ∈ [0, 3] × [0, 1] ×
[0, 1] and cache index X ∈ {A, B0, B1, C}, may be
modeled by Algorithm 2.5

Note that in Algorithm 2, timing matters: If a fault
in L1A happens at n = 0, then two of C’s 4 × 4-subma-
trices are affected, otherwise only one. Similarly, if
L1B suffers a fault corrupting B0 at n = m = 1, C will
not be affected.

The API hardware fault simulation is listed in
Algorithm 3. To inject one random fault into a pro-
gram making multiple uses of GEMM16, we count
the overall MMA instruction calls, MMA_total, of
that program, and pick a positive random number,
MMA_FI ≤ MMA_total, representing one of these calls.

By far, most of the work in Algorithm 3 is per-
formed through the API call to GEMM16: This will
be executed with maximal performance on any
hardware with a GEMM16 implementation. In com-
parison, the up to two MMA calls from GEMM16_FI
are insignificant—in particular, for real-world large
GEMM operations with thousands of MMA calls.

Coming back to the original problem of estimat-
ing (3): We may approximate Pr(severity | f, p) by the
relative failure frequency of program runs with hard-
ware fault simulation. To estimate Pr(f | p), the like-
lihood of encountering a transient fault, random in
time and space, does not depend on the level of par-
allelization: Whether four SAs are used, or a single
one four-times as long, does not matter. Accordingly,

5By not using the actual Cmn-input to MMA for the given (k, m, n), Algorithm 2 does
not account for “(a + b) + c ≠ a + (b + c).” To account for that, the k-loop needs to
be executed as in Algorithm 4.

given the fault rate, Rf, of one L1 cache and the dura-
tion, τMMA, of one MMA execution, we may estimate

 Pr MMA() exp _f p Rf≈ − − ⋅ ⋅()1 MMA total τ (5)

where the exponential failure distribution was used
to model the probability of fault given fault rate and
duration.

Simulating transient faults inside SAs
The same method applied for simulating transient

faults in the SA’s caches (previous section) may be
used for the simulation of arbitrary faults inside the
SAs MMA MMA��. For the SA’s digital arithmetic,
however, simulating the correct Cmn-input to the
MMA instruction matters6 and thus needs to be cal-
culated by simulating the k-loop (see Algorithm 4).
For real-world applications with large k-loops, the
additional simulation overhead is notable.

Simulating permanent faults
A permanent fault in an SA or its caches affects

every k, m, and n and thus Algorithm 4 needs to be
modified accordingly. The challenge in simulating
permanent faults lies in modeling the likelihood of
encountering the faulty SA.

6The SA may, for instance, perform optimizations if Cmn = 0.

Algorithm 2. GEMM16_FI_C: Simulate L1A/B/C
cache fault during GEMM16 execution.

Algorithm 3. GEMM16_FSIM: simulate fault in
GEMM16 execution.

Algorithm 4. GEMM16_FI_L: simulate fault inside
SA logic during GEMM16 execution.

80 IEEE Design&Test

Testability and Dependability of Artificial Intelligence Hardware

Suppose we execute a program with ten GEMM16
invocations on a DNN accelerator with 16 SAs. As
GEMM16 requires four SAs, each time GEMM16 is
invoked, so there are 16!/(16−4)! = 43,680 ways of
assigning four output quadrants to 16 SAs. For the
whole program, we get 43,68010 ≈ 1046 possibilities.

One approach to handle this problem is to model
worst- and best-case scenarios. For instance, con-
sidering Figure 1, in the worst case, the program’s
GEMM16s might always be mapped to the same slice
and randomly distributed among its 16 SAs, one of
which has a permanent fault. In the best case, each
SA might be chosen at random from the 512 SAs
comprising Figure l’s DNN accelerator.

ResNet-50 proof of concept
We applied the method presented in the previ-

ous section to ResNet-50 [10] inference on several
DNN accelerator configurations by modifying the
oneDNN API. Two of the oneDNN operations used
by ResNet-50 utilize SAs: Matrix multiplication and
convolution.2 We analyzed the algorithms imple-
mented by oneDNN for DNN accelerators and
developed fault models according to the method
described above. The buffers (FP16 data format)
were corrupted by a single random transient bitflip
for each inference, analogous to Algorithm 2. 24.8k
ImageNet [11] inferences were executed for each
configuration. The results are shown in Table 1.

The simulation was run on an Intel i9-7960X
CPU. A single inference without fault injection took
104 ms. The overhead in Table 1 is given with refer-
ence to this duration. “M × K × N” specifies the MMA
dimensions and “LB ” the number of K × N matrices
cached in L1B.4 “ΔTop” lists the change in percentage
of inputs for which the highest rated output label is
correct with versus without fault simulation. “#MMA”
lists the number of MMA calls for a single inference.

As expected from the previous section, the condi-
tional failure probability (3), which may be identified
with “ΔTop,” decreased with decreasing MMA dimen-
sions. The corrupted buffer element affects fewer out-
put elements. The effect on the exposure probability
(3) is more complicated: While smaller buffers result
in a smaller frequency of buffer corruption, account-
ing for the time the application is exposed to these
buffers is not straightforward. While the number of
required MMA calls obviously increases with decreas-
ing MMA dimensions, estimating the duration of each
such call for different dimensions requires knowl-
edge of the SA’s implementation. Consequently, one
should not draw conclusions on the risk (2) associ-
ated with different SA configurations from Table 1
without accounting for these factors.

In conclusion, we successfully applied our novel
methodology to a large workload, performing hundreds
of thousand hardware fault simulations within hours
on a regular CPU, where more traditional approaches
would have taken days for a single simulation.

Future work
The best- and worst-case approaches for mod-

eling permanent faults (previous section) do not
yield the single probability for program failure we
are after (3). Rather, it delivers upper/lower bounds
on that probability. Moving forward, we are devel-
oping models of computation incorporating sched-
uling algorithms for DNN accelerators to accurately
estimate this probability.

In the previous section, we suggest running a
hardware simulation, MMA� , for the complete MMA
instruction. When modeling permanent faults inside
the SAs, this simulation overhead becomes signifi-
cant. In future work, we will develop methods reduc-
ing the simulation overhead to simulating single
MAF units (previous section) only.

Finally, while our research has focused on utilizing
DNN accelerators for the class of DNN programs, other
classes of matrix multiplication heavy programs would
profit from using DNN accelerators (e.g., finite-element
methods). In upcoming work, we will investigate the
effect of hardware protection design choices on the
dependability of these kinds of programs.

Acknowledgments
We would like to thank Yue Qi, Fangwen Fu, and

Mourad Gouicem for technical insights on DNN accel-
erators and algorithms utilizing their architecture.

Table 1. Transient buffer fault simulation for DNN
accelerators running ResNet-50 inference.

81March/April 2023

 References
 [1] B. Reagen et al., “Ares: A framework for quantifying the

resilience of deep neural networks,” in Proc. 55th ACM/

ESDA/IEEE Design Autom. Conf. (DAC), Jun. 2018,

pp. 1–6.

 [2] H. T. Nguyen et al., “Chip-level soft error estimation

method,” IEEE Trans. Device Mater. Rel., vol. 5, no. 3,

pp. 365–381, Sep. 2005.

 [3] A. Rodriguez, Deep Learning Systems: Algorithms,

Compilers, and Processors for Large-Scale Production.

San Rafael, CA, USA: Morgan & Claypool, 2020.

 [4] S. Chetlur et al., “CuDNN: Efficient primitives for deep

learning,” Oct. 2014, arXiv:1410.0759.

 [5] Z. Kalbarczyk et al., “Hierarchical simulation approach

to accurate fault modeling for system dependability

evaluation,” IEEE Trans. Softw. Eng., vol. 25, no. 5,

pp. 619–632, Oct. 1999.

 [6] V. Sridharan and D. R. Kaeli, “Using hardware

vulnerability factors to enhance AVF analysis,” in Proc.

Int. Symp. Comput. Archit. (ISCA), 2010, pp. 461–472.

 [7] V. Sridharan and D. R. Kaeli, “Eliminating

microarchitectural dependency from architectural

vulnerability,” in Proc. Int. Symp. High Perform. Comput.

Archit. (HPCA), 2009, pp. 117–128.

 [8] N. Seifert and N. Tam, “Timing vulnerability factors of

sequentials,” IEEE Trans. Device Mater. Rel., vol. 4,

no. 3, pp. 516–522, Sep. 2004.

 [9] G. Li et al., “Understanding error propagation in deep

learning neural network (DNN) accelerators and

applications,” in Proc. Int. Conf. High Perform. Comput.,

Netw., Storage Anal. (ACM), 2017, pp. 1–12.

 [10] K. He et al., “Deep residual learning for image

recognition,” 2015, arXiv:1512.03385.

 [11] J. Deng et al., “ImageNet: A large-scale hierarchical

image database,” in Proc. CVPR, 2009, pp. 248–255.

Patrik Omland is a research scientist with Intel
Deutschland GmbH, 85579 Neubiberg, Germany. He
is pursuing a PhD with the Department of Informat-
ics, Technical University Munich, Munich, Germany.
His research interests include the effect of hard-
ware faults on program execution and digital arith-
metic/numerical algorithms. Omland has a master’s
in mathematical physics from the Ludwig-Maximil-
ians-University Munich, Munich.

Yang Peng is a research scientist and system
architect with Intel Deutschland GmbH, 85579 Neu-
biberg, Germany. His research interest includes sys-
tem architecture for dependable artificial intelligence/
machine learning (AI/ML)-based systems. Peng has

a PhD in electrical engineering from the Technical
University of Munich, Munich, Germany.

Michael Paulitsch is a principal engineer
with Intel Deutschland GmbH, 85579 Neubiberg,
Germany, where he leads the Dependability Research
Laboratories. His research interests include novel
architectures for dependable systems and machine
learning. Paulitsch has a PhD from Technical Uni-
versity Vienna, Vienna, Austria, and a PhD from
the Vienna University of Economics and Business,
Vienna. He is a Senior Member of IEEE.

Jorge Parra is a computer architect with Intel Cor-
poration, Santa Clara, CA 95054 USA, working on Intel’s
Xe GPU products. His research interests include com-
puter architecture, machine learning hardware archi-
tectures, and artificial intelligence. Parra has a PhD and
an MSc in electrical engineering from the University of
New Mexico, Albuquerque, NM, USA.

Gustavo Espinosa is a senior principal engineer
with Intel Corporation, Santa Clara, CA 95054 USA,
where he leads reliability and security architecture
development for discrete GPU products. Espinosa
has a master’s in computer engineering from Boston
University, Boston, MA, USA. He is a member of IEEE.

Abishai Daniel is a staff reliability, availability
and serviceability (RAS) quality and reliability engi-
neer with Intel Corporation, Santa Clara, CA 95054
USA, with a focus on statistical predictive model
development and application of novel machine
learning techniques to reliability modeling. Abishai
has an MSEE and a PhD from the University of Mich-
igan, Ann Arbor, MI, USA.

Gereon Hinz is the CEO of STTech, 82031 Grünwald,
Germany, providing solutions to current and upcoming
technological challenges in the autonomous systems
domain. Hinz has a master’s in cybernetics from the
University of Stuttgart, Stuttgart, Germany.

Alois Knoll is a professor of computer science
with the Department of Informatics, Technical Univer-
sity Munich, 85748 Munich, Germany. His research
interests include robotics, artificial intelligence, and
realtime systems. He is a Senior Member of IEEE.

 Direct questions and comments about this article
to Patrik Omland, Dependability Research Laboratory,
Intel Deutschland GmbH, 85579 Neubiberg, Germany;
patrik.omland@intel.com.

82 2168-2364/22©2022 IEEE Copublished by the IEEE CEDA, IEEE CASS, IEEE SSCS, and TTTC IEEE Design&Test

Testability and Dependability of Artificial Intelligence Hardware

On the Impact of
Uncertainties in
Silicon-Photonic
Neural Networks

 The rise of deep learning as the foundation
of most modern artificial intelligence (AI) applica-
tions has been fueled by domain-specific AI accel-
erators that support custom memory hierarchies,
variable precision, and optimized matrix multipli-
cation. Modern AI accelerators demonstrate supe-
rior energy and footprint efficiency compared to
GPUs for a variety of inference and some training
tasks. With the slowdown of Moore’s law, these
accelerators approach fundamental limits on their
performance due to: 1) the limited computational
and performance-per-watt capabilities of silicon
CMOS and 2) the use of low-bandwidth metallic
interconnects [1].

Optical computing
and communication can
potentially overcome both
these performance-limit-
ing issues. Computations
required in deep learn-

ing, such as matrix–vector multiplication, can be per-
formed entirely in the optical domain with high energy
efficiency. For instance, with respect to multiply and
accumulate (MAC) operations, optical computing
can achieve a 1,000× better energy footprint efficiency
compared to the most energy-efficient electronic accel-
erators today [2]. Additionally, optical interconnects
represent a post-Moore’s law alternative to replace
low-performance metallic interconnects, hence ensur-
ing lower power consumption, higher bandwidth, and
lower latency for the communication.

With the advent of silicon photonics, optical com-
ponents can now be integrated into dense silicon
chips using CMOS-compatible manufacturing tech-
niques. Silicon-photonic neural networks (SPNNs)
integrate the performance benefits offered by opti-
cal computing and interconnects with the low-cost
and mature CMOS fabrication process to enable

Digital Object Identifier 10.1109/MDAT.2022.3161599

Date of publication: 2 May 2022; date of current version:

10 March 2023.

Sanmitra Banerjee
Department of Electrical and Computer
Engineering
Duke University
Durham, NC 27708 USA

Mahdi Nikdast
Department of Electrical and Computer
Engineering
Colorado State University
Fort Collins, CO 80523, USA

Editor’s notes:
This article presents a method of criticality assessment to identify
susceptible components of silicon-photonic neural networks.

—Fei Su, Intel Corporation

Krishnendu Chakrabarty
Department of Electrical and Computer
Engineering
Duke University
Durham, NC 27708 USA

83March/April 2023

low-latency and energy-efficient optical domain data
transport and processing. However, SPNNs are prone
to several reliability issues. Imperfections in the opti-
cal lithography process lead to variations in critical
waveguide dimensions and hence incorrect opera-
tion of photonic components. Moreover, mutual ther-
mal crosstalk between adjacent optical components
due to convective heat transfer has been observed
[3]. These uncertainties, along with the finite encod-
ing precision on tuning parameters, can lead to the
erroneous matrix–vector multiplication and a conse-
quent loss in SPNN classification accuracy.

In this article, we present a comprehensive anal-
ysis of the impact of uncertainties in SPNNs. In par-
ticular, we show that the effect of uncertainties can
vary depending on the location and type of affected
optical components. The main contributions of this
article are as follows.

• An overview of different uncertainties in SPNNs
originating from fabrication-process variations,
manufacturing defects, and thermal crosstalk.

• A hierarchical analysis of the impact of different
uncertainties on SPNN performance starting from
the component level to the system level.

• A framework to identify critical SPNN compo-
nents where uncertainties can lead to severe per-
formance degradation.

Overview of SPNNs
A multilayer perceptron-based artificial neural net-

work (ANN) maps an input feature vector to an out-
put vector through a series of linear transformations
and nonlinear activation functions. The neurons in
adjacent linear layers (Figure 1a) are interconnected
using weighted edges; these weights are updated
during training to change the effect of each input.

To mimic this dynamic weighting of connections,
silicon-photonic devices can be used to control the
optical transmission between two neurons in differ-
ent ways. Coherent SPNNs (C-SPNNs) use thermo-op-
tic phase shifters (PhSs) to modify the phase of the
optical signal between two neurons. In this case, the
tuned phase shifts in the PhS denote the dynamic edge
weight. Alternatively, noncoherent SPNNs (N-SPNNs)
use microring resonators (MRs) to modify the opti-
cal signal power on the interconnection between
two neurons. The performance of NSPNNs can be
adversely affected due to geometric variations in the
waveguides. Experimental studies have shown that
MRs used in N-SPNNs can suffer from a 4.79-nm res-
onance drift within a wafer due to process variations
[4]. Additionally, NSPNNs require several power-hun-
gry wavelength-conversion steps and are prone to
interchannel crosstalk among different wavelengths.

As a result, C-SPNNs are being preferred for
emerging AI accelerators [5]. In this article, we
primarily focus on uncertainties in C-SPNNs and
present an overview of uncertainties in N-SPNNs
in the upcoming section. Fully connected layers
in C-SPNNs can be represented mathematically as
matrix–vector multiplication followed by an acti-
vation function. Consider a layer Li with ni neurons
fully connected to the next layer Li + 1 with ni + 1

neurons. The output vector at Li + 1 is then given by

O f M Oi
n

i i
n n

i
ni i i i

+

×

+ +

× ×
+ += ()1

1
1 1

11 1 . Note that fi + 1 and Mi + 1

are the nonlinear activation function and weight
matrix associated with layer Li + 1, respectively. In
C-SPNNs, the linear multiplication with the weight
matrix (i.e., M) is implemented using arrays of con-
figurable Mach–Zehnder interferometers (MZIs), as
shown in Figure 1b. Typically, activation functions
(e.g., fi + 1) are implemented electronically, as optical

Figure 1. Hierarchical design of a C-SPNN. (a) System level. (b) Layer level. (c) Device
level. (d) Component level. (e) 3-D schematic of a strip waveguide.

84 IEEE Design&Test

Testability and Dependability of Artificial Intelligence Hardware

nonlinearities require high signal power and impose
lower bounds on the physical footprint [6].

MZIs are used to determine the phase differ-
ence between collimated optical signals. Figure
1c shows the typical structure of an MZI with two
tunable PhSs—with phase shifts φ and θ—and two
50:50 beam splitters (BeSs). The PhS, as shown in
Figure 1d, are used to apply phase shifts and obtain
varying degrees of interference between the optical
signals traversing the two waveguides in the MZI.
The refractive index of a silicon (Si) waveguide
changes with temperature; this is known as the ther-
mo-optic effect. The thermal microheaters in PhSs
can tune this temperature change by varying the
current through a resistor coil. The Joule heat dissi-
pated from the resistor, in turn, controls the applied
phase shift. Figure 1d also shows the schematic of
a 2 × 2 directional coupler-based BeS. A fraction of
the input optical signal denoted by transmittance t
in In1 (In2) is coupled to Out2 (Out1) with a phase
shift of π/2. The remaining fraction of the optical
signal denoted by reflectance r is reflected to the
original waveguide and propagates from In1 (In2)
to Out1 (Out2). The ratios r and t are referred to as
splitting ratios in this article. As the optical signal is
distributed among the two waveguides in the ratios
of r and t, the optical power is distributed in the
ratios of r2 and t2. Therefore, from the law of conser-
vation of energy, we have r2 + t2 = 1. In an ideal 50:50
BeS, half of the optical power is reflected, while the
other half is transmitted; therefore, both the transmit-

tance and reflectance coefficients are 1
2

. The trans-

fer matrix of an MZI with two PhSs (φ and θ) and

two BeSs—with splitting ratios (r, t) and (,)′ ′r t —is
given by

T
rr e tt e ir te it r

it re itr e tt e

i i i

i iMZI =
− +

+ −

′ ′ ′ ′

′ ′ ′

+()

+()

θ φ φ θ

θ φ φ ii rrθ
+

′

. (1)

Using singular value decomposition, the weight
matrix corresponding to layer Li can be factorized
into two unitary matrices and a diagonal matrix:

M U V Ui i i i
H

i= ∑ ; and Vi are the unitary matrices and
Vi

H denotes the Hermitian transpose of Vi. Moreover,
Σi is a diagonal matrix consisting of the eigenvalues
of Mi. Any ni × ni unitary matrix can be represented

by an array of
ni

2

 MZIs connected, as shown in

Figure 1b. MZIs can also be used to attenuate each
waveguide separately without mixing (see Σ4 × 4 in

Figure 1b). In this way, an ni × ni diagonal matrix
can be represented by ni MZIs with one input and
one output of each MZI terminated using optical
waveguide tapers to prevent back-reflection and
cross-coupling at the unused ports [7]. Additionally,
an optical amplification, denoted by β in Figure 1b,
is required on each output to counter the power dis-
sipation in lossy MZIs.

SPNNs can be trained either in an in-situ or an
ex-situ fashion. In in-situ training, gradient computa-
tion needs to be performed on the SPNN platform;
this involves sequentially perturbing each parame-
ter of the circuit. Such training demands significant
computational time and resources and its efficiency
can be affected under thermal crosstalk. Thus, cur-
rent implementations of SPNNs are typically trained
ex-situ using a software model of the optical system
on a digital computer. After training, the voltage driv-
ers in the PhS are configured to realize the trained
weights.

Uncertainties in SPNNs
Silicon-photonic integrated circuits are sensitive

to nanometer-scale lithographic variations, manu-
facturing defects, and thermal crosstalk. In this sec-
tion, we explore the fabrication process variations
and run-time uncertainties affecting different pho-
tonic components.

Fabrication-process variations in C-SPNNs
Imperfections in the optical lithography process

may lead to variations in the resist sensitivity, resist
age or thickness, exposure change, and etching.
A prominent example of such variation is in the Si
waveguide width and thickness. Owing to the high
refractive index contrast between the Si core and
SiO2 cladding (Figure 1e), variations in the wave-
guide width and thickness significantly perturb the
effective index. The effective index (neff) is the ratio
between the phase shift per unit length in a wave-
guide relative to the phase shift per unit length in
vacuum. The effective index also depends on the
wavelength of the optical signal.

The temperature-dependent phase shift in PhSs is
given by

∆ = () ⋅ () ⋅ ∆φ
π

λ

2
0

l dn
dT

T

where l is the length of the PhS and λ0 is the opti-
cal wavelength [3]. Also, dn dT K≈ ⋅

− −1 8 10 4 1. is the
thermo-optic coefficient of silicon at λ0 = 1,550 nm

85March/April 2023

and temperature T = 300 K, and ∆T is the temperature
change. The tuned phase shift ∆φ can also change
under lithographic variations in l. Additionally, impuri-
ties introduced in the waveguide material during fab-
rication can affect dn dT .

The microheaters in PhSs are controlled either
by applying a tuned voltage or passing a tuned cur-
rent across the resistor coil. This voltage/current
can be supplied from a dc source based on a digi-
tal-to-analog converter (DAC). The precision of the
temperature shift ∆T and in turn the phase shift are
limited by the quantization error in the DAC. For
example, in an 8-bit DAC, only 256 different phase
shifts in the range [0, 2π] can be realized. Low-pre-
cision PhSs can degrade the accuracy of the linear
multipliers in SPNNs.

The power coupling coefficient in direction-
al-coupler-based BeSs denotes the fraction of input
power coupled from one member waveguide to the
other. This is given by K(z) = sin2 (δ z), where z is
the coupler length and δ is the field coupling coef-
ficient. In ideal 50:50 BeS r t= =()1 2 , K z() =1 2.
Variations in the waveguide dimensions and the gap
between the coupled waveguides arising from prox-
imity effects in the etching process affect δ. Changes
in δ, in addition to variations in the coupler length z,
can lead to nonidealities in BeSs.

Fabrication-process variations have a significant
impact on the individual PhS and BeS; as a result,
MZIs are highly sensitive to manufacturing uncertain-
ties. Indeed, MZIs are more sensitive to differential
variations among the two constituent waveguides
than the common-mode variations to the entire
device. This is because the operation of interfero-
metric devices (e.g., MZIs) depends on the phase
difference between optical signals in the constituent
waveguides. As a result, common-mode variations,
which affect optical signal on both the waveguides
uniformly, do not have a significant impact on the
performance of MZIs. Clearly, understanding the
uncertainties in silicon-photonic circuits (including
SPNNs) is essential for yield ramp-up.

Run-time uncertainties in C-SPNNs
Run-time uncertainties in C-SPNNs can arise due

to mutual thermal crosstalk among the microheat-
ers in thermo-optic PhSs. The tuned phase shift in
thermo-optic PhSs is proportional to l·∆T, where l
and ∆T denote the PhS length and the change in
temperature, respectively. To minimize the MZI

area overhead, larger ∆T is required for tuning
PhSs. This necessitates increased heater power con-
sumption and results in higher susceptibility to ther-
mal crosstalk. In fact, even the most efficient PhS
requires a voltage Vπ = 4.36 V and power Pπ = 24.77
mW to provide a phase shift of π [8]. The change
in phase in the victim PhS due to thermal crosstalk
depends on its geometric structure, heater mate-
rial, and the distance from the aggressor PhS. For
a 5-µm aggressor-victim gap filled with the default
SiO2 cladding and Pπ = 24.77 mW, the optical phase
shift in the victim PhS is greater than 0.5 rad [3].
Note that due to the latency associated with ther-
mal tuning, the effects of thermal crosstalk may not
be localized among proximal microheaters, espe-
cially in C-SPNNs with several MZIs. Moreover, due
to simultaneous thermal gradients emanating from
multiple MZIs, developing a high-fidelity thermal
model is complex and requires experimental meas-
urements. Therefore, in our analysis of the impact
of thermal crosstalk, we consider crosstalk-induced
phase uncertainties in all MZIs.

Prolonged voltage biasing of optical components
can lead to the formation of traps at the Si-SiO2

boundary in optical waveguides. Such traps affect
the refractive index of the Si core, thereby leading
to higher scattering-induced optical loss. Experimen-
tal results on on-chip photonic networks show up to
a 30% increase in the energy-delay product due to
trap-induced aging. Similar aging-induced run-time
uncertainties will also affect C-SPNNs due to long-
term thermal biasing.

Hierarchical analysis of the impact of
uncertainties in C-SPNNs

While there are different sources of uncertain-
ties in PhSs and BeSs (e.g., lithographic variations,
defects, impurities, and thermal crosstalk), their
impact can be modeled by considering uncer-
tainties in the phase shifts (for PhSs) and splitting
ratios (r and t for BeSs). In this section, we present
a case study on the impact of uncertainties in these
parameters due to lithographic variations and ther-
mal crosstalk. However, our criticality assessment
approach is agnostic to the source of uncertainties
and will therefore hold for any other sources of
uncertainties affecting the phase shifts and splitting
ratios. Figure 1a–d shows the different hierarchical
levels in our analysis. Component-level uncertain-
ties in the PhS and BeSs lead to faulty MZI operation

86 IEEE Design&Test

Testability and Dependability of Artificial Intelligence Hardware

at the device level. An array of faulty MZIs lead to
deviated matrices (e.g., U, Σ, and VH); this in turn
leads to faulty weight matrix (M) at the layer level.
At the system level, a C-SPNN with such faulty weight
matrices leads to inferencing errors. We conclude
this section with a discussion on few mitigation tech-
niques to improve the tolerance of C-SPNNs against
uncertainties.

Component level: PhSs and BeSs
The phase shifts in thermo-optic PhSs can be

affected due to lithographic variations in the wave-
guide, quantization error in the DAC, and thermal
crosstalk. Phase uncertainties from these sources
can be classified into two main types.

1. Nominal-dependent (ND) phase uncertainties:
The standard deviation of the phase uncer-
tainties is proportional to the nominal tuned
phase shift. In this case, the deviated phase
shift is given by φ̃ = φ + σndφℵ(0,1). Here, φ
and ℵ(0,1) denote the nominal tuned phase
shift and the standard normal distribution,
respectively. The standard deviation of the
uncertainties (σndφ) increases with φ. ND
uncertainties predominantly affect PhSs with
high phase shift; typical sources include ther-
mal crosstalk and quantization errors.

2. Nominal-independent (NI) phase uncertain-
ties: In this case, the standard deviation of
the uncertainties is independent of the tuned
phase shift, φ̃ = φ + σniℵ(0,1). NI uncertain-
ties include geometric process variations in
the waveguide and manufacturing defects
and impurities.

Prior studies indicate a mean phase uncertainty
of up to 0.21 rad (≈ 0.07π) in fabricated PhSs. To
consider a range of uncertainties around this mean,
we vary σnd and σni in the range [0.005π, 0.15π].
In ideal 50:50 BeSs, r t= =()1 2 (the “Fabrica-
tion-process Variations in C-SPNNs” section). How-
ever, with uncertainties, a deviation of 1%–2% is
typically expected in the r and t parameters. For
our analysis, we consider the deviated reflectance
r̃ = r + σBeSℵ(0,1) with the deviated transmittance t

� �t r= −()1 2 . For a fair comparison with the impact
of PhS uncertainties,σBeS is varied in the range

0 005 1 2 0 15 1 2. . , . .[] . Note that uncertainties in

the BeS are, in principle, NI as all the devices have
the same nominal splitting ratios r t= =1 2 .

Device level: MZIs
Variations in the phase shifts and splitting ratios

affect the MZI transfer matrix TMZI (1). To measure
the closeness between the deviated transfer matrix
T̃MZI and TMZI, we use the fidelity metric given by

F T T T T N(,) () � �= Trace
2

. Here, T̃† and N denote
the conjugate transpose and the size of T̃, respec-
tively. Note that F(T,T̃) = 1 if and only if T = T̃ and F
decreases with decreasing similarity between T and
T̃ . Figure 2a shows how F changes due to ND phase
uncertainties. In this case, the deviated phase shifts are
θ̃ = θ (1 + ∆rel) and φ̃ = φ (1 + ∆rel), where ∆rel denotes
the relative change in the phase shifts. Clearly, an MZI
with higher phase shifts is more susceptible to ND
phase uncertainties (the z-axis in Figure 2a denotes
1/F). However, for NI phase uncertainties, F is inde-
pendent of θ and φ. The susceptibility of different

Figure 2. (a) Deviation in TMZI due to ND phase uncertainties. (b) Average RVD (left) for
four 5 × 5 unitary matrices with one MZI under variations at a time. Right: MZI array
(including the MZI numbers) to represent any 5 × 5 unitary matrix. (c) Impact of ND and
NI phase uncertainties and uncertainties in BeS splitting ratio on the C-SPNN inference
accuracy.

87March/April 2023

MZIs to such uncertainties, and also to uncertainties
in the splitting ratio, depends solely on their position
in the MZI array.

Layer level: MZI array
Unitary multipliers in the linear layers of C-SPNNs

can be realized using MZI arrays. Due to faulty MZIs,
these unitary multipliers can deviate from their
intended form. The deviation can be measured
using the relative-variation distance (RVD) given by

RVD �

�

U U

U U

U

m n m n

n

N

m

N

m n

i

N

n

N
,

, ,

,

() =

−

==

==

∑∑

∑∑

11

11

.

Here, U(Ũ) denotes the N × N intended (deviated)
unitary matrix and |Um,n| denotes the absolute value of
Um,n. Figure 2b shows the mean RVD (over 1,000 itera-
tions) when uncertainties with σnd = 0.05, σni = 0.05π,
and σBeS = 0.05c are inserted in one MZI at a time, in
four different randomly generated 5 × 5 unitary matri-
ces. We observe that the distribution of mean RVD
differs across the four unitary matrices. Therefore, the
impact of uncertainties in the MZI array on the unitary
multipliers depend on both the phase shifts and the
position of the affected MZI.

System level: C-SPNN
Incorrect matrix multiplication at the layer level

can lead to misclassifications in the C-SPNN. To
understand the impact of uncertainties in the phase
shifts and splitting ratios on the classification accu-
racy, we consider an imprecise fully connected
C-SPNN with two hidden layers of 16 complex-val-
ued neurons. Each linear layer is followed by a non-
linear Softplus layer. A LogSoftMax layer is used after
the output layer to obtain a probability distribution.
We use a cross-entropy loss function during training.
To reduce the feature vector size, each real-valued
MNIST image is converted to a complex feature vec-
tor of length 16 using fast Fourier transform [9].

Figure 2c shows the mean inference accuracy (over
1,000 Monte Carlo iterations) under random ND and
NI uncertainties in PhSs (characterized by σnd and
σni) and uncertainties in BeSs (characterized by σBeS).
We observe that for the different cases, the inference
accuracy declines steeply due to these uncertainties.

In particular, with uncertainties in both PhSs and BeSs,
the accuracy drops by ≈70% even under low levels of
uncertainties (σni = 0.05π and σBeS = 0.05/r t= =()1 2). Also,
uncertainties in PhSs have a higher impact on the accu-
racy compared to similar uncertainties in BeSs.

Understanding the impact of localized uncer-
tainties in the MZI array is necessary for identifying
the critical components in an SPNN. The tolerance
of an MZI is defined as the maximum allowable
change in the splitting ratio of a component BeS
that can be recovered using postfabrication thermal
tuning in PhSs. Based on this notion of tolerance,
it is found that the central MZIs in an array, which
require a tuned phase shift very close to 0, have
the minimum tolerance to BeS fabrication errors.
However, the tolerance of an MZI to uncertainties
(or the lack thereof) can also be quantified by the

Figure 4. Comparison between the loss in inferencing
accuracy in the presence of ND phase uncertainties in
the PhS with the top (fhigh%) and bottom (flow%) phase
shifts in each layer.

Figure 3. Average accuracy loss (in %) due to
zonal perturbations in the unitary weight matrices
representing the weights in the first hidden layer.
(a) UL1. (b) VL1

H.

88 IEEE Design&Test

Testability and Dependability of Artificial Intelligence Hardware

accuracy loss due to localized uncertainties in the
MZI. A higher accuracy loss signifies lower tolerance
of an MZI to localized uncertainties. To simulate the
impact of localized NI uncertainties, we divide the
C-SPNN into zones of four MZIs (in a 2 × 2 grid). We
then select one zone at a time to insert uncertain-
ties with σni = 0.1π and σBeS = 0.1/r t= =()1 2, while all other
zones have background uncertainty with σni = 0.05π
and σBeS = 0.05/r t= =()1 2. Figure 3 shows the mean accu-
racy loss (over 1,000 Monte Carlo iterations) due to
localized uncertainties in the two unitary matrices
corresponding to the first hidden layer in our C-SPNN
in the form of heatmaps. Each cell in the heatmaps
corresponds to a zone with 2 × 2 MZIs. The value
(color) in each cell denotes the accuracy loss due
to uncertainties. We observe that even under similar
levels of uncertainties, the accuracy loss can vary by
up to 10%. Also, note that the low- and high-impact
zones are arranged randomly in each heatmap. This
reiterates our prior observation that the suscepti-
bility of MZIs to different uncertainties depends on
the tuned phase shifts as well as their location in
the array.

However, in the presence of ND phase uncertain-
ties, the inferencing accuracy is strongly correlated
with the tuned phase shift of the affected MZI(s)—
MZIs with higher phase shifts are more susceptible
to such uncertainties. To demonstrate this, we rank
the tuned phase shifts in each layer of our example
C-SPNN in decreasing order, and insert ND uncer-
tainties (quantified by σnd) to the top fhigh% and
bottom flow% ranked phase shifts. Figure 4 shows the
inferencing accuracy loss due to such uncertainties
can be catastrophic (up to ≈ 60%) when MZIs with
higher phase angles are affected. In contrast, MZIs
with lower phase angles are practically resilient to
ND uncertainties. Therefore, minimizing the tuned
phase shifts improves the C-SPNN performance
under such uncertainties, in addition to improving
their power efficiency (static power consumption in
PhSs is proportional to the tuned phase shift). How-
ever, in realistic scenarios, C-SPNNs encounter both
NI and ND uncertainties and therefore the overall
susceptibility of MZIs to uncertainties depends on
both their tuned phase shift and location.

Mitigating the impact of uncertainties in
C-SPNNs

The extent of the impact of fabrication process
and run-time uncertainties on C-SPNNs has only

recently been fully understood and as such, there are
very few uncertainty mitigation techniques specific
to C-SPNNs. Postfabrication trimming approaches
can minimize the phase uncertainties between
the two arms of an MZI by implanting Ge in the Si
waveguide.

Ge implantation converts crystalline Si (lower
refractive index) into its amorphous form (higher
refractive index) by breaking the chemical bonds.
Due to this, the refractive index (and in turn, the
phase shift) in each arm can be precisely trimmed
by laser annealing [10]. However, postfabrication
calibration methods rely heavily on the character-
ization of individual MZIs; therefore, this method
is infeasible for C-SPNNs with high MZI count. To
reduce thermal crosstalk, microheaters can be iso-
lated using deep trenches cutting through the SiO2

cladding. These structures do not involve special
fabrication techniques and lead to a 3× reduction in
the phase shift under thermal crosstalk [3]. Recent
search efforts for mitigation techniques also focus
on uncertainty resilient architectures such as the
FFTNet which reduces the optical depth and utilizes
fewer MZIs, and the diamond topology where the
symmetric structure leads to uniform optical losses
in each input-to-output path. An uncertainty-aware
training method that uses a modified cost func-
tion during training and postfabrication hardware
calibration is presented in [11]. A novel zero-cost
optimization technique that improves the power effi-
ciency and robustness by leveraging the nonunique-
ness of singular value decomposition has been
proposed in [12].

sPNNs are ProNe to nanometer-level fabrica-
tion process variations, interdevice thermal cross-
talk, optical loss, and manufacturing defects. Each
of these sources of uncertainties affects the phase
angles and the splitting ratios in different ways. In this
article, we have presented a comprehensive analysis
of the various fabrication-process variations and run-
time uncertainties and explored several methods
to mitigate their impact on the performance of an
SPNN. We have used a unified hierarchical approach
for criticality assessment of these uncertainties and
shown that the degradation in performance depends
on both the tuned parameter values and the position
of the affected components. Our framework can be
used for posttraining identification and compensa-
tion of critical SPNN components.

89March/April 2023

 References
 [1] D. A. B. Miller, “Device requirements for optical

interconnects to silicon chips,” Proc. IEEE, vol. 97,

no. 7, pp. 1166–1185, Jul. 2009.

 [2] A. R. Totovic et al., “Femtojoule per MAC neuromorphic

photonics: An energy and technology roadmap,” IEEE

J. Sel. Topics Quantum Electron., vol. 26, no. 5,

pp. 1–15, Oct. 2020.

 [3] M. Jacques et al., “Optimization of thermo-optic

phase-shifter design and mitigation of thermal

crosstalk on the SOI platform,” Opt. Exp., vol. 27, no. 8,

pp. 10456–10471, Apr. 2019.

 [4] J. S. Orcutt et al., “Nanophotonic integration in state-of-

the-art CMOS foundries,” Opt. Exp., vol. 19, no. 3,

pp. 2335–2346, Jan. 2011.

 [5] M. R. Watts et al., “Adiabatic thermo-optic Mach–

Zehnder switch,” Opt. Lett., vol. 38, no. 5

 pp. 733–735, 2013.

 [6] I. A. D. Williamson et al., “Reprogrammable electrooptic

nonlinear activation functions for optical neural

networks,” IEEE J. Sel. Topics Quantum Electron.,

vol. 26, no. 1, pp. 1–12, Feb. 2020.

 [7] S. Khan et al., “Low-loss, high-bandwidth fiber-to-chip

coupling using capped adiabatic tapered fibers,” APL

Photon., vol. 5, no. 5, 2020, Art. no. 056101.

 [8] N. C. Harris et al., “Efficient, compact and low loss

thermo-optic phase shifter in silicon,” Opt. Exp.,

vol. 22, no. 9, pp. 10487–10493, May 2014.

 [9] S. Banerjee, M. Nikdast, and K. Chakrabarty,

“Modeling silicon-photonic neural networks under

uncertainties,” in Proc. Design, Autom. Test Eur. Conf.

Exhib. (DATE), Feb. 2021, pp. 98–101.

 [10] X. Chen et al., “Post-fabrication phase trimming of

Mach–Zehnder interferometers by laser annealing of

germanium implanted waveguides,” Photon. Res.,

vol. 5, no. 6, pp. 578–582, 2017.

 [11] Y. Zhu et al., “Countering variations and thermal

effects for accurate optical neural networks,” in Proc.

IEEE/ACM Int. Conf. Comput. Aided Design (ICCAD),

Nov. 2020, pp. 1–7.

 [12] S. Banerjee et al., “Optimizing coherent integrated

photonic neural networks under random uncertainties,”

in Proc. IEEE/OSA OFC, Jun. 2021, pp. 1–3.

Sanmitra Banerjee is pursuing a PhD in electri-
cal and computer engineering with Duke University,
Durham, NC 27708 USA. His current research inter-
ests include fault modeling and design-for-testability
solutions for artificial intelligence accelerators based
on emerging technologies. Banerjee has a BTech
from the Indian Institute of Technology, Kharagpur,
India. He is a Student Member of IEEE and ACM
SIGDA.

Mahdi Nikdast is an assistant professor with the
Department of Electrical and Computer Engineer-
ing (ECE), Colorado State University, Fort Collins,
CO 80523 USA, where he leads the Electronic-Pho-
tonic System Design Laboratory. Nikdast has a PhD
in electrical and computer engineering from the
Hong Kong University of Science and Technology,
Hong Kong. He is a Senior Member of IEEE.

Krishnendu Chakrabarty is the John
Cocke Distinguished Professor of Electrical and
Computer Engineering at Duke University, Dur-
ham, NC 27708 USA. His current research projects
include design-for-testability of 3-D ICs, systolic-ar-
ray and silicon photonic AI accelerators, microfluidic
biochips, hardware security, AI for healthcare, and
neuromorphic computing systems. Chakrabarty has
a PhD from the University of Michigan, Ann Arbor, MI,
USA. He is a Fellow of ACM and IEEE. He is also a
Golden Core Member of the IEEE Computer Society.

 Direct questions and comments about this article
to Sanmitra Banerjee, Department of Electrical and
Computer Engineering, Duke University, Durham, NC
27708 USA; sb535@duke.edu.

https://ieeexplore.ieee.org/author/37072183000

90 2168-2364/22©2022 IEEE Copublished by the IEEE CEDA, IEEE CASS, IEEE SSCS, and TTTC IEEE Design&Test

Testability and Dependability of Artificial Intelligence Hardware

Analysis and Mitigation
of DRAM Faults
in Sparse-DNN
Accelerators

 With the increasing size of deep neural net-
works (DNNs), accelerators fail to efficiently process
the large amounts of synaptic weights, thereby incur-
ring intensive computation and memory accesses
[1]. Sparse-DNN accelerators aim to alleviate this
challenge posed by the overwhelming number of
neurons and synapses, while maintaining the accu-
racy of the original network. Sparse accelerator
employs a novel dataflow that enables maintaining
the sparse tensors in a compressed encoding format,
which minimizes data transfers and reduces storage
requirements.

Dynamic random access memory (DRAM) is tra-
ditionally utilized as the main memory subsystem
in such resource-constrained sparse accelerators.
However, due to device-level nonidealities in this

semiconductor memory
configuration, cells in the
DRAM tend to leak out
charge, thereby inducing
bit-flips in the structure
past their retention time.
Hence, the DRAM mod-

ule is periodically refreshed to replenish the cells,
thereby incurring considerable power overheads. To
address this issue, several researchers proposed low-
ering the refresh rates [2], [3]. However, this results
in bit-flips that are highly dependent on the temper-
ature and VRTs of each cell in the structure. Such
bit-flips impacting the crucial model parameters can
be detrimental to DNN inference outcomes. Since
such accelerators are often deployed in mission-crit-
ical environments, mitigating the impact of such
faults is imperative to avoid catastrophic circum-
stances. A point to note here is that, even though the
accuracy of the DNN accelerator is of paramount
importance in safety-critical applications, the energy
consumption of such systems often incurs signifi-
cant costs in resource-constrained scenarios [4].
Hence, approximation has emerged as a strategy to
provide execution performance and save computa-
tional resources at the cost of a tolerable precision
reduction in high-assurance environments [4], [5].
Depending on the application and the accuracy

Digital Object Identifier 10.1109/MDAT.2022.3183545

Date of publication: 15 June 2022; date of current version:

10 March 2023.

Shamik Kundu
The University of Texas at Dallas
Richardson, TX 75080 USA

Arnab Raha, Suvadeep Banerjee, and
Suriyaprakash Natarajan
Intel Corporation, Santa Clara, CA 95054 USA

Editor’s notes:
This article analyzes the dynamic random-access memory (DRAM)
faults in sparse deep neural network (DNN) accelerators and presents a
systematic quality-aware mitigation strategy.

—Fei Su, Intel Corporation

Kanad Basu
The University of Texas at Dallas
Richardson, TX 75080 USA

91March/April 2023

of the DNN accelerator, the designer incorporates
approximation in the system performance and
defines a conservative threshold, below which the
impact of a manifested error is deemed as critical by
the deployed application.

In this article, we develop a novel error injection
framework that analyzes the impact of errors on
application quality. Variations in device-level char-
acteristics of the transistors in the DRAM engender
faults throughout the structure, which are induced
as bit-flip errors at random locations in the mem-
ory subsystem. Moreover, we provide a systematic
approach to mitigate faults, thereby improving the
reliability in the context of energy-limited sparse-
DNN accelerators. To the best of our knowledge,
this is the first work that focuses on the reliability of
sparse-DNN accelerators.

The key contributions of this article are as follows.

• This article demonstrates a novel error injection
framework in the memory subsystem of a sparse-
DNN accelerator, which exploits the sparsity in
a tensor graph to expedite the execution of net-
work inference.

• Application-level reliability analysis of the accel-
erator for varying DRAM refresh intervals at mul-
tiple operating temperatures, executing multiple
DNN architectures on multivariate data sets, pro-
vides an estimation of the vulnerability of the
architecture.

• Finally, by virtue of the step-by-step systematic miti-
gation technique, our proposed framework incorpo-
rates approximation in the sparse accelerator that
maintains the classification accuracy above the
critical threshold, while also minimizing the energy
consumption by lowering the refresh interval of the
memory module to the maximum extent possible.

Related Work
Ongoing research on implementing DNNs at the

edge has led to the development of sparse acceler-
ators, which leverages the sparsity of the network
architecture to furnish improved performance and
energy efficiency over traditional dense accelera-
tors [1]. To further reduce the energy consumption
in these resource-constrained environments, exist-
ing research has proposed the utilization of subop-
timal DRAM refresh rates, thereby approximating
the device performance [2], [3]. However, at these
suboptimal refresh rates, the impact of DRAM bit-flip

errors on safety-critical DNN accelerators has not
been well explored.

In a complementary metal–oxide–semiconductor
(CMOS)-based DNN accelerator, the susceptibility of
the architecture under single-event upsets on the dat-
apath is analyzed on multiple convolutional neural
network (CNN) models [6]. To explore the impact of
errors on the accuracy, permanent faults are injected
into the memory [7] and datapath [8] of a DNN accel-
erator. However, none of these approaches focus on
fault tolerance of sparse-DNN accelerators, arising
from suboptimal refresh rates in the DRAM.

Background

DRAM basics
A DRAM is usually organized as multiple collec-

tions of a 2-D array of DRAM cells, where each DRAM
cell consists of a single access transistor and a single
capacitor. The charge stored in this capacitor deter-
mines the DRAM cell value. Due to various nonideal-
ities associated with the access transistor, the charge
stored in the capacitor leaks away over time (reten-
tion time). Hence, a DRAM requires its charge to
be periodically replenished using an implicit back-
ground refresh operation every 64 ms. This periodic
refresh operation usually contributes to a significant
amount of DRAM energy overhead as well as a per-
formance bottleneck [3].

To address this challenge, recent works have pro-
posed DRAM to increase the refresh period to values
that are orders of magnitude higher than the nom-
inal 64 ms [3]. However, it also results in bit errors
at random DRAM sites due to variations associated
with the underlying process technology, as shown
in Figure 1a. The impact of temperature on bit error
rate is drastic, compared to the refresh interval. This
can be attributed to the DRAM cell retention time,
which decreases exponentially with higher operat-
ing temperatures [9]. These DRAM bit errors are of
two types: true error and antierror, where a bit value
of 1 gets flipped to 0 and vice versa, respectively [9].
The number of their occurrences increases with an
increase in refresh period as shown in Figure 1b and
significantly exceeds the threshold below which
error-correction codes (ECCs) in DRAM can be effec-
tive. As depicted in Figure 1c, a large number of bit
errors also stem from the phenomenon of variable
retention time (VRT) [10]. A DRAM VRT cell exhib-
its multiple retention times (or states) randomly and

92 IEEE Design&Test

Testability and Dependability of Artificial Intelligence Hardware

unpredictably at different points. The probability
of a bit error occurring at different bit positions in a
32-bit word is demonstrated in Figure 1d. The detri-
mental impact of these errors on DNN accelerators
has not been evaluated in existing research, which
serves as the primary motivation behind this work. It
should be noted that although ECC can address this,
it results in additional hardware overhead. Hence,
many commercial DRAM models are either devoid
of or have limited ECC capabilities [10].

Sparse-DNN accelerators
To accommodate the compute-intensive DNN

algorithms, a number of DNN accelerators have
been developed. Recently, a new class of sparse
DNN accelerators has emerged that accelerates the

performance of sparse matrix convolution. Along
with the trained network parameters, these accel-
erators contain compute acceleration and memory
compression bitmaps in the DRAM. The compute
acceleration bitmap enables the accelerator to lever-
age the sparsity in a tensor graph and therefore, skip
certain computations during the inference, based
on the bitmap encoding of the tensors. The memory
compression bitmap, on the other hand, allows for
reduced data movement and increased on-die stor-
age capacity. Thus, the sparse accelerator furnishes
improved performance and energy efficiency by uti-
lizing a dense compressed representation of weights
throughout the entire process flow. Since these
data and their corresponding bitmaps are stored
in the DRAM, their reliability is extremely critical.

Figure 1. DRAM error characteristics. (a) Variation of refresh bit error rate
with temperature and refresh interval. (b) Variation of true and anti-DRAM
bit error rate with refresh interval. (c) Increase in VRT cells with refresh
interval and temperature. (d) Probability of a bit error occurring at different
bit positions. The experimental setup is similar to that described in [3].

93March/April 2023

Errors in these parameters can lead to a reduction
in the classification accuracy of the sparse acceler-
ator. To this end, we propose a novel fault injection
framework and subsequently develop a systematic
quality-aware mitigation strategy to improve the per-
formance of the sparse accelerator on multiple DNN
applications.

Error injection framework
In this article, a DNN is considered to be trained

one time in a nonfaulty environment. The trained
weights, along with the bitmaps, are stored in the
DRAM of the sparse inference accelerator at the edge.
In this section, we present a novel error injection that
introduces faults in this DRAM architecture at subop-
timal refresh rates. A point to note here is that we do
not consider the impact of errors in the activations of
the DNN, since they are stored in the static random
access memory (SRAM) of the accelerator (the next
level of memory closer to the processing element),
which is much smaller in size and lacks the need of
a constant refresh, as opposed to the DRAM. Synaptic
weights, on the other hand, are stored for all the layers
of the network together in the much larger DRAM and
hence are subjected to DRAM faults.

Error in trained model weights
To illustrate the impact of error injection in the

pretrained weights, let us consider an output yi from
a particular neuron in a hidden layer of the network,
which can be represented as

 y w , a b , a (y)i i j j i

j

i i= + =∑ φ (1)

where wi,j represents a specific weight element from
the weight matrix of a particular layer, which is multi-
plied with activation aj and subsequently added with
bias bi. The accumulated output over a column of the
weight matrix is then passed onto a nonlinear activa-
tion φ to furnish the output from a distinct neuron in
a specific layer of the network. Now, let us consider
an error in the DRAM, which when manifested in the
stored location of wi,j alters the value by an amount
∆w, thereby mapping a weight of w’i,j = wi,j ± ∆w
instead of wi,j in the inference architecture. Hence,
the output y’i can be represented as

y’ w’ , a b (w , w)a b

w , a wa b

i i j j i i j

jj

j i

i j j

j

j i

= + = ±∆ +

= ± ∆ +

∑∑

∑

 (2)

As a result of this additional ∆waj, y’i furnishes an
erroneous computation, which is propagated to all
the neurons in the subsequent layers of the network.
The impact of the injected fault in the weight thus
amplifies, degrading the classification accuracy.

Error in compute acceleration bitmap
Compute acceleration bitmaps are generated

by ANDing the sparsity bitmaps obtained from
performing zero-valued compression on both acti-
vations and weights. These bitmaps stored in the
DRAM enable the sparse accelerator to skip certain
computations, thereby expediting the inference
execution. For example, let us consider the weights
corresponding to a specific layer of the network.
The sparse accelerator encodes each nonzero
weight within the DRAM as “1”; correspondingly,
each zero weight is encoded as “0” in the accelera-
tion bitmap, and subsequently stored in the DRAM.
Now, as these weights are multiplied with their
corresponding activations, the computation for the
weights that are mapped as “0” are skipped, and
only those mapped as “1” are executed, thereby
accelerating the inference.

As shown in Figure 2a, an antierror in this
encoded bitmap flips a “0” to “1.” But, since this
erroneous “1” in the bitmap corresponds to a zero
value of the weight, executing this computation
will render a zero output, thus having no impact
on the inference. However, this unnecessary com-
putation leads to an increase in energy consump-
tion, along with undesired performance penalties.
On the contrary, as a true error in this bitmap flips
a “1” to “0,” the computation that should have
been executed is disregarded in the process, as
demonstrated in Figure 2a. This modifies the net-
work architecture, leading to substantial degrada-
tion of the accuracy.

Error in memory compression bitmap
Memory compression bitmaps, stored in the

DRAM, are leveraged by the sparse accelerator to
enable zero-valued compression, thereby reducing
memory access. Figure 2b represents an illustrative
memory compression bitmap, which is generated by
encoding the nonzero values as “1” and zeroes as
“0” from the original data array. Prior to inference,
the accelerator traverses the bitmap sequentially to
access the memory locations that have “1,” and skips
those which are denoted as “0.”

94 IEEE Design&Test

Testability and Dependability of Artificial Intelligence Hardware

If an error (true or anti) is injected in this mem-
ory compression bitmap, the mapping of weights
will be jeopardized, as demonstrated in Figure 2b.
Let us consider scenario one, where the bit-flips at
specific locations are marked in red. In this case,
the weights are not only mapped to the incorrect
locations, but the last nonzero weight “–37” is also
not accessed, thereby resulting in an erroneous
representation. In the second scenario, the num-
ber of 1’s in the encoded bitmap has exceeded
the number of nonzero values in the original data
array. Hence, along with incorrect weight mapping,

when all the nonzero values from the original data
array have been accessed, a garbage value “g” is
dumped in the corresponding location with “1” in
the memory compression bitmap. Thus, injecting
both true and antierrors leads to an erroneous rep-
resentation of the weight array, thereby modifying
the network configuration, resulting in degrada-
tion in performance in the sparse accelerator. For
cases where the compute acceleration bitmap is
not stored in DRAM but computed internally dur-
ing inference, a fault in the memory compression
bitmap translates to a fault in compute accelera-
tion bitmap as well.

Experimental results

Experimental setup
We considered two popular neural network

architectures, multilayer perceptrons (MLPS) and
CNNs, LeNet and VGG-16. MLPs are executed on
data sets—Modified National Institute of Stand-
ards and Technology (MNIST) and fashion-MNIST
(F-MNIST), whereas LeNet is executed on F-MNIST
and VGG-16 on CIFAR-10. The MLP has four fully
connected layers of (256 – 256 – 256 – 10) config-
uration. To perform a behavioral simulation of a
sparse accelerator, we implemented the MLP and
CNNs in Keras and PyTorch frameworks, respec-
tively, using Python3. The trained weights from
each network are extracted and quantized to 8
bits to be stored in the DRAM, similar to [8]. In a
nonfaulty environment, MLP furnishes a baseline
accuracy of 97.28% and 88.17% for MNIST and
F-MNIST, respectively. LeNet, on the other hand,
furnishes a baseline classification accuracy of
92.16% for F-MNIST, and VGG-16 exhibits a corre-
sponding baseline of 91.43% on CIFAR-10. A point
to note here is that even though a model trained
with dropout layers is traditionally presumed to
improve the resiliency of the DNN against errors,
the threshold of such resilience can also be easily
inflicted with bit-level faults and hence not consid-
ered a baseline. The novel error injection frame-
work performs ten Monte Carlo simulations, in
accordance with existing research [11], to induce
both true and antierrors at random locations in the
weights as well as the encoded bitmaps through-
out the DRAM structure. We tracked the errors at a
page granularity, where each page acquires a size
of 4 KB in a 1 GB DRAM.

Figure 2. Error injection in (a) compute acceleration
bitmap and (b) memory compression bitmap of a
sparse accelerator.

95March/April 2023

Results

Memory compression bitmap under DRAM
faults

Figure 3a represents the degradation in accuracy
for incremental faults in the memory compression
bitmaps of the sparse accelerator. With a single fault,
MLP on MNIST furnishes a significant accuracy drop
of 80.28%, which increases to a maximum degrada-
tion of 88.79% for five faults per layer of the network.
An identical trend is observed for the remaining data
sets and networks. Therefore, it can be inferred with-
out loss of generality that errors in memory compres-
sion bitmaps are detrimental to the reliability of the
sparse accelerator.

Compute acceleration bitmap under
DRAM faults

The impact on accuracy for both MLP and CNNs
is observed by injection of true errors in the encoded
compute acceleration bitmap, as represented in
Figure 3b and c, respectively. With incremental
faults in the bitmap, the degradation in classifica-
tion accuracy increases to a point, from where it
saturates. The saturation point is obtained upon
inflicting all the encoded weights with true errors
in the last layer of the network. MNIST and F-MNIST
furnish maximum accuracy drops of 87.54% and
78.17%, respectively, for a fault rate of 1%. LeNet
and VGG-16 on F-MNIST and CIFAR-10 manifest
a maximum of 83.11% and 82.36% degradation
on the accuracy, respectively, at a 2% fault rate.
Hence, errors in the compute acceleration bit-
maps also cause significant degradation in network
performance.

Model weights under DRAM faults
The position of the induced bit-flip is varied

across the three most significant bit positions, start-
ing from the sign bit. The corresponding reduction
in accuracy for MLPs on MNIST and F-MNIST have
been outlined in Figure 4a and b, while Figure 4d
and c demonstrates the performance degradation
of CNNs on the F-MNIST and CIFAR-10 data sets,
respectively. As the significance of the bit posi-
tion diminishes, the sensitivity of the induced fault
reduces. However, the number of faults required
to obtain a significant accuracy drop for faults
in model weights is substantially higher than the
encoded bitmaps. Hence, the model weights are

inferred to be the most resilient, which motivates
us to explore the impact of VRT and operating tem-
perature on the weights of the sparse accelerator.

Impact of VRT of DRAM on network
performance

In this experiment, the susceptibility of the
sparse accelerator under faults is analyzed for VRTs
in each cell of the DRAM module at suboptimal
refresh rates for a particular operating tempera-
ture of 25 °C. The number of bit flips correspond-
ing to each refresh interval is obtained from the
DRAM characteristics as demonstrated in Figure
1. Figure 4e outlines the reduction in accuracy for
errors induced in the trained weights. The reduc-
tion in accuracy increases with incremental refresh
intervals until 40 seconds, after which every single
weight in the DRAM render to be faulty to furnish
a consistent degradation in accuracy. Additionally,
medium refresh intervals impact all classes in the
data set owing to random fault mani festation in
each of the ten runs. As a result, a slightly increased
accuracy drop is exhibited, which furnishes a
biased impact of faults on a particular class of
data. Hence, as seen from Figure 4e, lower refresh
intervals (less than 5 s, but higher than the nominal
refresh interval of 64 ms) are imperative to evade
degradation in accuracy, thereby bolstering the
reliability of the sparse accelerator.

Impact of DRAM temperature on network
performance

To analyze the impact of variation in temperature
on bit errors, as explained in the previous section,
the previous experiment is repeated, but at an oper-
ating temperature of 70 °C. While the former simu-
lates a room-temperature environment, the latter
indicates a higher temperature that a typical com-
mercial application can attain during operation. The
vulnerability of the sparse accelerator for four differ-
ent networks is observed at 70 °C and plotted along-
side 25 °C in Figure 4e. As observed from the figure,
at higher refresh intervals, the reduction in classifi-
cation accuracy saturates for both the temperatures,
similar to the previous section.

Mitigation strategy
To mitigate these impacts of faults, we propose

a systematic step-by-step quality-aware mitigation
technique that incorporates approximation in the

96 IEEE Design&Test

Testability and Dependability of Artificial Intelligence Hardware

sparse accelerator. This enables the accelerator to

maintain the classification accuracy above the crit-

ical threshold, while also minimizing the energy

consumption by lowering the refresh interval of the

memory module to the maximum extent possible.

Prior research [3] has shown that the page error

rate in a DRAM due to high refresh intervals follows

almost a similar trend as the bit error rate, which is

demonstrated in Figure 1a. In such a DRAM, even

at higher refresh intervals, there exist certain pages

which manifest zero error. We refer to a collection of

these zero error pages as an error-free bin.

Utilizing this DRAM configuration, we propose a

strategy that is capable of incrementally enhancing

the fault tolerance of the sparse accelerator. Depend-

ing on the desired performance from the target DNN

application, we develop a three-stage fault mitiga-
tion technique, as discussed below.

• Stage I: The memory compression bitmaps are
the first to be allotted in the limited number of
error-free bins in the DRAM. Since the mem-
ory compression bitmaps are rendered to be
the most vulnerable as shown in the previous
section, these are prioritized over the compute
acceleration bitmaps and the model weights to
be stored in the zero-error pages. When this stage
is implemented, the accelerator is able to recover
up to 76.24% of the classification accuracy of the
sparse DNN, averaged over the four different
case studies. The worst-case scenario can appear
from faults in the compute acceleration bitmaps,
which is demonstrated in the previous section.

Figure 3. Reduction in classification accuracy for faults in (a)
memory compression bitmap and compute acceleration bitmap of
(b) MLP on MNIST and F-MNIST; (c) LeNet on F-MNIST and VGG-16
on CIFAR-10.

97March/April 2023

Figure 4.Variation of accuracy drop for faults in model weights of (a) MLP on MNIST, (b)
MLP on F-MNIST, (c) LeNet on F-MNIST, and (d) VGG-16 on CIFAR-10. (e) Impact of VRT
and DRAM temperature on the classification accuracy of the sparse accelerator.

98 IEEE Design&Test

Testability and Dependability of Artificial Intelligence Hardware

• Stage II: If the DRAM is left with more error-free
bins, the encoded compute acceleration bitmaps
are then stored in these pages, along with the
memory compression bitmaps. This furnishes up
to 84.48% recovery in classification accuracy of
the sparse DNN accelerator. In this case, faults can
manifest in the trained model weights, the impact
of which is demonstrated in the previous section.

• Stage III: This stage furnishes the storage of model
weights along with the encoded memory com-
pression and computes acceleration bitmaps in
the available error-free pages in the DRAM. Thus,
the sparse accelerator obtains a maximum fault
tolerance with 100% recovery in classification
accuracy, when exposed to errors in the memory
subsystem.

This quality-aware mitigation approach is out-
lined in Figure 5. This entire operation is performed
by the designer, prior to the deployment of the
memory module at the edge. Based on the expected
accuracy from the target DNN inference, the errors
in the vulnerable components can be mitigated
with the proposed technique. With the DRAM spec-
ifications as mentioned in the previous section, this
approach will furnish a minimal memory overhead
in the sparse DNN accelerator.

Discussion
In this article, a novel error injection framework is

proposed in the context of sparse accelerators. Faults
manifested in the DRAM of a sparse DNN accelera-
tor not only incorporate errors in the trained model
parameters, but also impact the memory encoding
bitmaps and the compute acceleration bitmaps of
the sparse network. Faults in the bitmaps inflict the
control flow of the accelerator, thereby modifying
the topology of the underlying DNN, as demonstrated
in the previous section. In comparison, faults in the
model weights only introduce errors in computa-
tion, without impacting the network architecture. As
a result, the reduction in classification accuracy for
faults in the sparsity bitmaps is significantly higher
compared to faults in the network parameters, as
outlined in the previous section.

Following this, we developed a quality-aware
fault mitigation technique to incrementally improve
the performance of the accelerator, at the cost of
minimal memory overhead. In 1-GB DRAM with a
page size of 4 KB, the total number of pages is 1 GB/
AKB = 262,144. The number of bits required to index
each of these pages to identify the error-free ones
can be calculated as /oy%262111 = 18. Therefore, an
excess of 18 × 262,144 = 4,718,592 bits is required for

Figure 5. Overview of the proposed mitigation strategy.

99March/April 2023

the mitigation strategy, equivalent to 0.05% memory
overhead on the 1-GB DRAM. Thus, in lieu of mini-
mal overhead, this scheme will enable the DRAM to
operate at lower refresh intervals, while improving
the reliability of the sparse accelerator.

to the best of our knowledge, this is the first
work that performs an application-level reliability
analysis on a sparse-DNN accelerator subjected to
DRAM faults. The analysis derived in this article can
be extrapolated to other network architectures as
well to explore model-specific fault tolerance. This
will aid in storing the critical weights in the error-free
bins of the DRAM, where the number of zero-error
pages is limited. This will reduce the memory over-
head, while improving the reliability of such acceler-
ators used in mission-critical systems.

Acknowledgments
This work was supported by the Semiconductor

Research Corporation (GRC Task: 2930.001).

 References
 [1] S. Zhang et al., “Cambricon-X: An accelerator for

sparse neural networks,” in Proc. IEEE/ACM MICRO,

Oct. 2016, pp. 1–12.

 [2] S. Liu et al., “Flikker: Saving DRAM refresh-power

through critical data partitioning,” in Proc. ASPLOS,

2011, pp. 213–224.

 [3] A. Raha et al., “Quality configurable approximate

DRAM,” IEEE Trans. Comput., vol. 66, no. 7,

pp. 1172–1187, Jul. 2017.

 [4] G. S. Rodrigues, F. L. Kastensmidt, and A. Bosio,

“Approximate computing for safety-critical applications,”

in Proc. IEEE 22nd Latin Amer. Test Symp. (LATS),

Oct. 2021, pp. 1–3.

 [5] G. S. Rodrigues et al., “Performances VS reliability:

How to exploit approximate computing for safety-

critical applications,” in Proc. IEEE 24th Int. Symp.

On-Line Test. Robust Syst. Design (IOLTS), Jul. 2018,

pp. 291–294.

 [6] G. Li et al., “Understanding error propagation in deep

learning neural network (DNN) accelerators and

applications,” in Proc. SC, Nov. 2017, pp. 1–12.

 [7] B. Reagen et al., “Ares: A framework for quantifying

the resilience of deep neural networks,” in Proc. ACM

DAC, 2018, pp. 1–6.

 [8] S. Kundu et al., “Toward functional safety of systolic

array-based deep learning hardware accelerators,”

IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,

vol. 29, no. 3, pp. 485–498, Mar. 2021.

 [9] J. Liu et al., “An experimental study of data retention

behavior in modern DRAM devices: Implications for

retention time profiling mechanisms,” ACM SIGARCH

Comput. Archit. News, vol. 41, no. 3, pp. 60–71, 2013.

 [10] M. K. Qureshi et al., “AVATAR: A variable-retention-time

(VRT) aware refresh for DRAM systems,” in Proc. IEEE

DSN, Jun. 2015, pp. 427–437.

 [11] J. J. Zhang et al., “Analyzing and mitigating the

impact of permanent faults on a systolic array based

neural network accelerator,” in Proc. IEEE VTS,

Apr. 2018, pp. 1–6.

Shamik Kundu is pursuing a PhD with the
Department of Electrical and Computer Engineer-
ing, The University of Texas at Dallas, Richardson,
TX 75080 USA. He is a Student Member of IEEE.

Arnab Raha is a staff research scientist at the
Advanced Architecture Research Group, Intel Edge AI,
Santa Clara, CA 95054 USA. Raha has a PhD in electri-
cal and computer engineering from Purdue University,
West Lafayette, IN, USA. He is a member of IEEE.

Suvadeep Banerjee is a research scientist
with Intel Labs, Santa Clara, CA 95054 USA. Baner-
jee has a PhD in electrical and computer engineering
from the Georgia Institute of Technology, Atlanta, GA,
USA. He is a member of IEEE.

Suriyaprakash Natarajan is a senior
researcher with Manufacturing and Product Engineer-
ing (MPE), Intel Corporation, Santa Clara, CA 95054
USA. Natarajan has a PhD in computer engineering
from the University of Southern California, Los Ange-
les, CA, USA. He is a Senior Member of IEEE.

Kanad Basu is an assistant professor at the Elec-
trical and Computer Engineering Department, The
University of Texas at Dallas, Richardson, TX 75080
USA. Basu has a PhD from the Department of Com-
puter and Information Science and Engineering, Uni-
versity of Florida, Gainesville, FL, USA. He is a Senior
Member of IEEE.

 Direct questions and comments about this article to
Shamik Kundu, The University of Texas at Dallas, Rich-
ardson, TX 75080 USA; shamik.kundu@utdallas.edu.

mailto:shamik.kundu@utdallas.edu

100 2168-2364/22©2022 IEEE Copublished by the IEEE CEDA, IEEE CASS, IEEE SSCS, and TTTC IEEE Design&Test

Testability and Dependability of Artificial Intelligence Hardware

On the Mitigation of
Read Disturbances in
Neuromorphic Inference
Hardware

 Neuromorphic systems are integrated cir-
cuits designed to mimic the neural architecture in
primates. Here, neural circuity is tightly coupled
with synaptic storage, which eliminates the perfor-
mance and energy bottlenecks of shared-memory
systems for machine learning inference [1].
Non-volatile memory (NVM) cells such as oxide-
based resistive switching random access memory
(OxRRAM) can implement multilevel analog opera-
tions, which make them ideal candidates for storing
model parameters, that is, the synaptic weights of a
machine learning model [2].

For use as an inference hardware, trained model
parameters are programmed as resistance states on
OxRRAM cells of the hardware. Once programmed,
the hardware is expected to perform inference con-
tinuously, without having to reprogram the model
parameters. Unfortunately, OxRRAM cells suffer from

the read disturb issue,
where a cell’s resistance
state may drift from its
programmed value upon
repeated access during
inference [3]. We show
that resistance drifts can

lead to a lower inference accuracy.
One system-level technique to mitigate read dis-

turbances in a neuromorphic hardware is to peri-
odically reprogram the trained parameters to the
OxRRAM cells of the hardware. Reprogramming of
model parameters involves transferring the synaptic
weights from the main memory (primary storage) to
the neuromorphic hardware via bandwidth-limited
memory channels (see Figure 11). Additionally, NVM
cells require the long-latency program-and-verify
(P&V) scheme to configure their resistance states
[4]. These factors increase the time it takes to repro-
gram model parameters on OxRRAM cells. When a
model is being reprogrammed, the hardware is una-
vailable to perform inference operations. Therefore,
the performance overhead associated with periodic
reprogramming is

 reprogram overhead =
t

t

RPT
RPI

, (1)

where tRPT defines the reprogramming time of the
model and tRPI defines the interval at which the
model is being reprogrammed to the hardware.

Digital Object Identifier 10.1109/MDAT.2022.3148967

Date of publication: 2 February 2022; date of current version:

10 March 2023.

Ankita Paul, Shihao Song, Twisha Titirsha, and
Anup Das
Department of Electrical and Computer Engineering
Drexel University
Philadelphia, PA 19147 USA

Editor’s notes:
This article presents a system software framework to mitigate read disturb
failures of nonvolatile memory (NVM) cells used to implement synapses in
neuromorphic fabric.

—Fei Su, Intel Corporation

101March/April 2023

We show that periodic reprogramming leads to a
high system overhead even for smaller models like
LeNet and AlexNet and is expected to become a
critical performance bottleneck for emerging large
models such as VGGNet, ResNet, and DenseNet. Our
objective is to minimize this overhead by increasing
the reprogram interval tRPI. To this end, we make
the following three key observations.

Observation 1: Different synaptic connections of
a machine learning model have different tolerance
to resistance drift and they impact model accuracy
differently.

Observation 2: OxRRAM cells in a neuromorphic
hardware exhibit variation in read disturbance due
to a difference in the exposed read voltage used dur-
ing inference.

Observation 3: Activation of a synaptic connec-
tion in a model is workload-dependent and it leads
to a difference in the amount of resistance drift
within the model.

Based on these three observations, we propose
a system software framework that incorporates this
application and voltage-dependent characteristics
of read disturbance of OxRRAM cells in implement-
ing a machine learning model on the hardware.
The key idea is to implement the synaptic weight of
connections that have higher activations and lead to
higher accuracy drop on NVM cells that are exposed
to lower voltages during inference. In this way, we
are able to sustain larger resistance drifts of synaptic
weights before reprogramming of model parameters
on OxRRAM cells becomes necessary.

A preliminary version of this system software
framework is proposed in our prior work [5]. Here,
we extend this framework in four key directions:
1) introducing overhead due to reprogramming of
model parameters as a key performance metric;
2) extending the system software framework to peri-
odically reprogram model parameters to a neuro-
morphic hardware to maintain integrity of machine

learning tasks; 3) a convex optimization formulation
of cluster mapping to crossbar to reduce the sys-
tem overhead; and 4) exploiting machine learning
model characteristics to identify non-critical model
parameters and eliminating them from the critical
path of deciding the reprogramming interval. In this
way, our convex optimizer is able to increase the
reprogramming interval compared to [5], thereby
significantly reducing the system overhead.

We integrate the proposed system software frame-
work inside NeuroXplorer [6], a cycle-accurate sim-
ulator of neuromorphic hardware and evaluate it
using five commonly used machine learning infer-
ence applications. Results demonstrate an average
35% reduction of system overhead.

Resistance drift tolerance of machine
learning workloads

Synaptic connections of a machine learning work-
load have varying tolerances to resistance drift. This
impacts accuracy differently. To illustrate this, we
consider 2-bit quantized versions of five commonly
used convolutional neural networks (CNNs)—LeNet
(1989), AlexNet (2012), VGGNet (2015), ResNet
(2015), and DenseNet (2017). There are three weight
levels used in these models, corresponding to ter-
nary values of −1, 0, and +1 [7]. Figure 1 illustrates
the fraction of total synapses in the fully connected
layer that leads to 1% or higher accuracy drop. We
report results for the following four configurations:
1) resistance reduction by two levels (“−2”); 2) resist-
ance reduction by one level (“1”); 3) resistance
increase by 1 level (“+1”); and 4) resistance increase
by two levels (“+2”).1 We make the following three
key observations.

1 We note that if a synaptic weight is +1, then the synapse is tolerant to resistance
drifts in the positive direction. Similarly, if a synaptic weight is −1, then the synapse
is tolerant to drifts in the negative direction. Such cases are included in the results
of Figure 1.

Figure 1. Fraction of total synapses in the fully connected layer that leads to accuracy
drop due to resistance drift.

102 IEEE Design&Test

Testability and Dependability of Artificial Intelligence Hardware

First, synapses in a machine learning model have
varying tolerance to resistance drift. On average,
only 35% of synapses show accuracy drop when
their resistance drifts by two levels in the negative
direction, only 66% when resistance drifts by one
level in the negative direction, only 60% when resist-
ance drifts by one level in the positive direction, and
only 30% when resistance drifts by two levels in the
positive direction. The reason for such variations is
twofold. First, most machine learning models are
over-parameterized. Therefore, resistance levels of
noncritical synapses do not impact the accuracy.
Second, due to the approximate training using the
backpropagation algorithm, a drift in the resistance
level of some synapses may not impact accuracy
significantly. To this end, we note that the synaptic
weight value of a noncritical synapse may not nec-
essarily be close to zero. It simply means that any
change of its weight value may not impact accuracy.
For this reason, any neuron and synapse pruning
strategy such as [7] will not eliminate noncritical
synapses that are nonzero.

Second, for LeNet, only a small fraction (less
than 1%) of synapses lead to accuracy drop when
resistance drifts by +1 and +2. This is because most of
synaptic weights of LeNet are positive. So, any transi-
tion in the positive direction results in no significant
accuracy impact.

Third, tolerance to resistance drift depends on the
specific CNN model and therefore, model-specific
solutions are needed. Our proposed approach is the
following. First, we identify the critical synapses, that
is, those that have high impact on accuracy by ana-
lyzing a CNN model. Next, we exploit device char-
acteristics and mapping alternatives to minimize the
negative impact of resistance drift.

To motivate our solution, we discuss resistance
drift in NVMs, focusing on OxRRAM devices.

Resistance drifts in NVM devices

OxRRAM technology
The OxRRAM technology presents an attractive

option for implementing the synaptic cells of a cross-
bar due to its demonstrated potential for low-power
multilevel operation and high integration density [2].
An OxRRAM cell is composed of an insulating film
sandwiched between conducting electrodes forming a
metal–insulator–metal (MIM) structure (see Figure 2).
Recently, filament-based metal-oxide OxRRAM imple-
mented with transition-metal-oxides such as HfO2,
ZrO2, and TiO2 has received considerable attention due
to their low power and CMOS-compatible scaling.

Synaptic weights are represented as conductance
of the insulating layer within each OxRRAM cell.
To program an OxRRAM cell, elevated voltages are
applied at the top and bottom electrodes, which rear-
ranges the atomic structure of the insulating layer.
Figure 2 shows the high-resistance state (HRS) and
the low-resistance state (LRS) of an OxRRAM cell. An
OxRRAM cell can also be programmed into interme-
diate LRSs, allowing its multilevel operations.

Read disturbance issues of OxRRAM cells
In OxRRAM technology, the transition from HRS

to one of the LRS states is governed by a sudden
decrease of the vertical filament gap on application
of a stress voltage during spike propagation [3]. This
is illustrated in the left subfigure of Figure 3, where
the vertical filament gap is shown to reduce by an
amount h. This may result in a conducting filament
(CF) between the two metal layers causing the resis-
tive state to change from HRS to LRS. The rate of
change of the filament gap of the OxRRAM cell is

dg

dt
e h

a

L

qV

kT

g

g

Ea
kT= − ⋅

⋅
⋅

 = − ⋅

−

ϑ
γ

γ γ β0
0

0
0

3

sin , where

 (2)

.

Figure 2. Operation of an OxRRAM cell with the HfO2
layer sandwiched between the metals Ti (top electrode)
and TiN (bottom electrode). The left subfigure shows
the formation of LRS states with the formation of
CF. The right subfigure shows the depletion of CF on
application of a negative voltage on the TE.

103March/April 2023

In the above equation, t defines the state transi-
tion time, g0 is the initial filament gap of the OxR-
RAM cell, V is the voltage applied to the cell, γ is
the local field enhancement factor, which is related
to the gap g, a0 is the atomic hoping distance, Ea is
the activation energy, k is the Boltzmann’s constant,
T is the temperature (in Kelvin), L is the length of
the vertical filament, q is the filament charge, ϑ0 is
a constant related to vertical filament growth, and
γ0 and β are fitting constants.

The transition from one of the LRS states is gov-
erned by the lateral filament growth [3]. This is illus-
trated in the right subfigure of Figure 3. The time for
state transition in the OxRRAM cell is given by

 t V() . .LRS =
− ⋅ +10 14 7 6 7 sec (3)

If the state transition time of an OxRRAM cell is
1,000 ms, then a single quasi-static read operating
using one 1,000 ms read pulse or equivalently, 1,000
read accesses using 1-ms spike pulses can lead to an
abrupt change in the cell’s state.2

From (2) and (3), we see that the state transition
time of an OxRRAM cell depends heavily on the volt-
age of operation of the cell. To this end, we investi-
gate the internal architecture of a processing core in
a neuromorphic hardware. In many recent designs,
analog crossbars are used as cores. Figure 4 (left)
shows an N × N crossbar, where the OxRRAM cells
are organized in a 2-D grid with horizontal word-
lines and vertical bitlines. Presynaptic neurons are
mapped along wordlines and postsynaptic neurons
along bitlines, as shown in the figure. The synaptic
weight between a presynaptic neuron (ni, placed
on the ith wordline) and a postsynaptic neuron (nj,
placed on the jth bitline) is programmed as conduct-
ance of the OxRRAM cell (i, j) located at the inter-
section of the ith wordline and jth bitline.

For forward propagation of neuron excitation,
a spike voltage is created by ni, which generates a
current that propagates to the neuron nj via the con-
ductance of the (i, j)th OxRRAM cell. Figure 4 (right)
shows the parasitic components on such current
paths. Formally, the number of parasitic compo-
nents on the current path via the (i, j)th OxRRAM
cell is (i + j + 1).

Parasitic components on bitlines and word-
lines of a crossbar create variation in currents

2 Apart from resistance drift, there are also other forms of reliability issues reported
for OxRRAM in the context of neuromorphic hardware [8]–[11].

.

propagating via different OxRRAM cells of the crossbar;
the higher the number of parasitic components, the
smaller is the current, and vice versa. Therefore, the
current through (0, 0)th OxRRAM cell is higher than
(N − 1, N − 1)th OxRRAM cell in an N × N crossbar.

Figure 5 shows the difference between currents
on the shortest and longest path for 32 × 32, 64 ×
64, 128 × 128, and 256 × 256 crossbars at a 65-nm
process node. The input spike voltage of the presyn-
aptic neurons is set to generate 50 µA on the longest
path. This current value corresponds to the current
needed to read the resistance state of the OxRRAM
cell on this path. We observe that the current on the
longest path is lower than the shortest path by 13.3%
for 32 × 32, 25.1% for 64 × 64, 39.2% for 128 × 128, and
55.8% for 256 × 256 crossbar.

Figure 3. Read disturbances due to structural
alteration in an OxRRAM cell. The left subfigure
shows a reduction of the conductive filament gap (i.e.,
read disturbance of HRS state) on the application
of a stress voltage. The right subfigure shows the
lateral growth of the conductive filament (i.e., read
disturbance of LRS state) due to application of a
stress voltage.

Figure 4. N × N crossbar showing the parasitic
components within.

104 IEEE Design&Test

Testability and Dependability of Artificial Intelligence Hardware

Current variation in a crossbar leads to a differ-
ence in the voltage applied across different OxRRAM
cells in a crossbar. This is illustrated in Figure 6a,
where the minimum and maximum voltages are 0.4
and 0.57 V, respectively. Such voltage differences
cause variation of the state transition time [see

(2) and (3)]. Figure 6b shows such variation for
OxRRAM cells in the crossbar, with each cell pro-
grammed to the HRS state. The minimum and maxi-
mum state transition times are 5,227 and 31,214 ms,
respectively.

In a recent work, we have shown that the unit par-
asitic resistance of bitlines/wordlines increases from
1 Ω at 65 nm to 3.8 Ω at 16 nm [10]. Such increase
in the value of parasitic resistance leads to a higher
voltage applied across each OxRRAM cell in the
crossbar, which further reduces its state transition
time. To illustrate this, Figure 7 shows the variation
in state transition time of OxRRAM cells in a crossbar
at different process technology nodes. We make the
following two key observations. First, the state transi-
tion time decreases with technology scaling. This is
due to an increase in the voltage within the crossbar
at scaled nodes. Second, the variation of state tran-
sition time increases at smaller nodes due to higher
voltage and current variations [10].

Finally, the state transition time of OxRRAM
cells also depends on the resistance state. Figure
8 shows the dependence of the minimum state
transition time of OxRRAM cells in a crossbar for
the four process technology nodes. We make two
key observations. First, the state transition time
reduces with technology scaling, which we have
analyzed before. Second, the state transition time
of an OxRRAM cell is higher when the cell is pro-
grammed in the HRS state for all process technol-
ogy nodes. This is because the vertical filament
growth phenomena (in the HRS state) in OxRRAM
technology is slower than the lateral filament
growth (in the LRS state).

During each inference operation, OxRRAM cells
of a crossbar propagate spikes from a machine learn-
ing workload. To compute the inference lifetime of
an OxRRAM cell, which is defined as the number of
inference operations, it takes for the resistance state
of the cell to drift from its programmed value, we let η
be the average number of spikes through the cell per
inference operation. Formally, inference lifetime L is

 L =
t(/)LRS HRS

η

 (4)

To ensure integrity of machine learning, that is,
to prevent accuracy drop, the OxRRAM cell must be
reprogrammed to the original resistance state once
every inference lifetime. Since different OxRRAM
cells in a neuromorphic crossbar have different

.

Figure 5. Difference between current on the shortest
and longest paths in a crossbar for different crossbar
sizes.

Figure 6. Variation of voltage and state transition
time in a 128 × 128 crossbar. (a) Voltage variation
in a 128 × 128 crossbar at a 65-nm node. (b) State
transition times in a 128 × 128 crossbar with all cells
programmed to the HRS state.

Figure 7. Variation in state transition time of OxRRAM
cells in a crossbar as a function of current.

Figure 8. Variation in state transition time of OxRRAM
cells in a crossbar as a function of the resistance
state.

105March/April 2023

inference lifetime, the reprogramming interval tRPI
of model parameters to the hardware [see (1)] is
defined as the minimum inference lifetime of all
OxRRAM cells in the crossbar, that is,

 t
i j

i jRPI min=
∀ ,

,L (5)

The number of spikes propagating through an
OxRRAM cell depends on the machine learning
workload and how the workload is mapped to the
crossbar. This is described next.

Workload dependency of inference
lifetime

To understand the workload dependency of
inference lifetime, we focus on (9). Here η is the
average spikes per image through an OxRRAM cell
implementing the machine learning workload. This
is computed as follows. Consider our machine learn-
ing model is represented as M(N, S) with the set
N of neurons and the set S of synapses. If xi is the
number of spikes communicated from a presynap-
tic neuron to a postsynaptic neuron via si, then the
total number of spikes for the image is xii∑

. In our
implementation, each synapse (i.e., its weight) is
programmed on an individual OxRRAM cell. There-
fore, the number of spikes through all OxRRAM cells
of the hardware is xii∑

. We compute the average
number of spikes per image through an individual
OxRRAM cell as the sum of spikes for all images
inferred by the model averaged over the number of
images and synapses, that is,

 Avg. Spike Per Image =
×

∑∑
=

x

I S

iij

I

1 , (6)

where I is the number of images inferred by M.
Figure 9 shows the histogram of average spikes per

image propagating through the synapses of VGGNet.
We collected these statistics by analyzing CIFAR-10
training and test data sets. We see that there are 20
synapses in the model that communicate between 1
and 2 spikes per image, 30 synapses that communi-
cate between 2 and 3 spikes per image, and so on.
Therefore, some synapses propagate more spikes
than others.

If we consider two different synapses of a model
with different spike count, then the one with a higher
number of spikes will result in a lower inference life-
time when mapped to the OxRRAM cell at a specific
position in the crossbar.

.

Additionally, the spike count on a synapse also
depends on the input presented to a model. To illus-
trate this, Figure 10 plots the spike firing rate of 100
randomly selected neurons in VGGNet. We observe
that the spike firing rate of a neuron in VGGNet
depends on the image presented to the model.

The proposed design methodology incorporates
such application and model-dependent behavior to
better optimize the synapse mapping to OxRRAM
cells. This is described next.3

Proposed design methodology
Figure 11 shows the proposed system architecture

designed in NeuroXplorer [6]. A machine learning
model is first trained using training data. The model
parameters are stored in memory. The trained model
is clustered using the graph partitioning algorithm of
NeuroXplorer. For each cluster, an optimization is
performed to map the neurons and synapses of the
cluster to the OxRRAM cells of a crossbar, by exploit-
ing: 1) spike data collected from the training set
and 2) technology-specific state-transition time data
obtained from characterizing the hardware. The
cluster optimization step generates the parameter
reprogramming interval tRPI, which is then used to
periodically reprogram the model parameters to the

3 The scope of the current work is on design-time approaches in mitigating resist-
ance drift. Our future work will involve designing a run-time framework to evaluate
spike count of synapses based on the model input and enable remapping of the
synaptic connections to further reduce the system overhead.

Figure 9. Spike distribution across the synapses of
VGGNet.

Figure 10. Spike rate of 100 randomly selected
neurons in VGGNet for two training images and two
test images.

106 IEEE Design&Test

Testability and Dependability of Artificial Intelligence Hardware

hardware via bandwidth-limited memory channels.
The new blocks that we introduce in NeuroXplorer
are shown in red in Figure 11.

We introduce the following notations to formu-
late the cluster optimization problem.

M = Set of presynaptic neurons of a cluster.
   N = Set of postsynaptic neurons of a cluster.
     S = Set of synapses of a cluster .
ηi,k = Spikes on the synapse si,k ∈ S.
 ej,l = State transition time of the (j, l)th OxRRAM

cell in a crossbar.

 xi, j = { 1, if presynaptic neuron mi ∈  M is
mapped to crossbar input Ij

 0, otherwise.

yk,l =
 { 1, if postsynaptic neuron nk ∈ N is

mapped to crossbar output Ol
 0, otherwise.

Following are the constraints.
• A presynaptic neuron can be mapped to exactly

one input port of a crossbar, that is,

 x ii j

j

, .
∀

∑ = ∀1 (7)

• A postsynaptic neuron can be mapped to exactly
one output port of a crossbar, that is,

 y kk l

l

, .
∀

∑ = ∀1 (8)

We formulate the optimization problem as fol-
lows. xi,j ⋅ yk,l defines the mapping of synapse si,k ∈ S

to the (j, l)th OxRRAM cell in the crossbar. The infer-
ence lifetime of this mapping is

 Li j k l
j l

i k

e
, , ,

,

,
.=

η
 (9)

The optimization problem is

 Maximize t x y
i j k l

i j k l i j k lRPI min= ⋅ ⋅
∀ , , ,

, , , , , .L (10)

The nonlinear operation of multiplication of two
binary variables xi, j, and yk, l is linearized by introduc-
ing a new product variable zi, j, k, l, with the following
additional constraints.
• If xi, j = 0 and/or yk, l = 0, then zi, j, k, l = 0, that is,

 z x z yi j k l i j i j k l k l, , , , , , , , .≤ ≤ and (11)

• If xi, j = 1 and yk, l = 1, then zi, j, k, l = 1, that is,

 z x zi j k l i j i j k l, , , , , , , .≥ + −1 (12)

The new optimization problem is

 Maximize min
∀

⋅
i j k l

i j k l i j k lz
, , ,

, , , , , , .L (13)

This max–min optimization problem is a convex
one [proof of Karush–Kuhn–Tucker (KKT) condi-
tions are omitted for space limitations]. The problem
can be solved using CVXPY by introducing a slack
variable τ as

 Maximizeτ τ , , , ., , , , , ,� ≤ ⋅ ∀z i j k li j k l i j k lL (14)

To incorporate the criticality of a synaptic con-
nection, we assign a very small number as the spike
count η for the synapse. In other words, the spike
count of critical synapses is identified using the train-
ing set, while those for noncritical synapses are set to
a very small value. In this way, we force L [see (9)]
to a very large value for the noncritical synapses.
This allows the convex optimizer to eliminate them
from the critical path of determining the reprogram-
ming interval tRPI [see (14)].

Results and discussion
We evaluate the proposed design methodology

for OxRRAM-based neuromorphic hardware. We
configure NeuroXplorer with the hardware parame-
ters listed in Table 1.

We use five commonly used CNN applications
with 2-bit quantized synaptic weights. These applica-
tions are described in Table 2.

Figure 11. System architecture.

Table 1. Major simulation parameters extracted from [2].

107March/April 2023

We evaluate the following techniques.
• SpiNeMap: This baseline approach first clusters a

machine-learning inference model to minimize
the intercluster spike communication [12]. Clus-
ters are then mapped to crossbars of a neuro-
morphic hardware with synapses of each cluster
implemented randomly on OxRRAM cells of a
crossbar.

• Endurer: This is our previous work, which
addresses the reprogramming of model parame-
ters on crossbars of a neuromorphic hardware to
maintain model integrity [5]. A machine learning
model is clustered using SpiNeMap. Clusters are
placed to crossbars to maximize inference life-
time. To map cluster synapses to the OxRRAM
cells of a crossbar, Endurer uses a binary nonlin-
ear optimization problem formulation.

• Proposed: The proposed approach is based
on Endurer. It introduces the following two
new changes to Endurer: 1) it characterizes a
machine learning model to identify noncritical
synapses such that they could be eliminated
from the critical path of determining the repro-
gramming interval and 2) the convex optimiza-
tion formulation and the proposed linearization
technique improves the solution quality and
improves the speed-up, accelerating the design
space exploration.

Accuracy
Figure 12 reports the accuracy improvement due

to periodic reprogramming of model parameters in
Endurer and the proposed approach compared to
SpiNeMap, where no reprogramming is performed.
We observe that by enabling reprogramming of
model parameters, model accuracy can be improved
by 25% (between 3% and 87%). This is because, with-
out periodic reprogramming in place, model param-
eters may drift due to frequent accesses of OxRRAM
cells where these parameters are programmed.
Parameter drift leads to lower accuracy. Addition-
ally, the extent of accuracy impact depends on
the specific model that is programmed to the hard-
ware. For AlexNet, we observe a 47% drop, while for
ResNet and DenseNet, the drop is only 4%.

System overhead
Figure 13 reports the system overhead of the pro-

posed approach compared to Endurer for the evalu-
ated CNNs. Results are normalized to Endurer. Since

SpiNeMap does not involve periodic reprogram-
ming, there is no system overhead. We have there-
fore not shown SpiNeMap in the figure.

We observe that the system overhead of the pro-
posed approach is on average 35% lower than Endurer
(between 23% and 50%). This improvement is due to
the increase of reprogramming interval in the proposed
approach. Such improvement is attributed to two fac-
tors. First, noncritical synapses are not on the critical
path for determining the reprogramming interval tRPI
in the proposed approach, while such synapses are
factored in determining tRPI in Endurer. Second, the
convex optimizer CVXPY of the proposed approach
generates a better solution than the approximate binary
nonlinear optimization technique of Endurer.

We also observe that the improvement is usually
higher for models with higher fraction of noncritical
synapses. Therefore, the improvement for ResNet is
higher than LeNet.

iN this work, we study the resistance drift-related
reliability issues in OxRRAM-based neuromorphic
hardware used to implement machine learning
inference models. Through circuit-level simulations,

Figure 13. Overhead improvement of the proposed
approach.

Figure 12. Accuracy improvement due to periodic
reprogramming.

Table 2. CNN applications used to evaluate the proposed design.

108 IEEE Design&Test

Testability and Dependability of Artificial Intelligence Hardware

we show the dependence of these issues on: 1) the
resistance state of an OxRRAM cell (model param-
eter dependency); 2) the current through the cell
(circuit dependency); and 3) the spikes propagat-
ing through the cell (workload dependency). We
incorporate this study in a system software frame-
work and show a significant accuracy drop due to
resistance drift. To maintain the integrity of machine
learning inference, model parameters need to be
reprogrammed to the hardware periodically, which
incurs a significant system overhead. We propose
an approach to minimizing this system overhead by
first analyzing a machine learning model to identify
noncritical synapses and then proposing a convex
optimization solution to maximize the reprogram
interval. The proposed optimizer eliminates the
noncritical synapses from the critical path of deter-
mining the reprogram interval. Evaluations with five
commonly used CNN applications show an average
35% improvement in the system overhead.

Acknowledgments
This work was supported by the National Sci-

ence Foundation Faculty Early Career Development
Award under Grant CCF-1942697 (CAREER: Facilitat-
ing Dependable Neuromorphic Computing: Vision,
Architecture, and Impact on Programmability).

 References
 [1] M. L. Varshika et al., “Design of many-core big little

µBrain for energy-efficient embedded neuromorphic

computing,” in Proc. DATE, 2022, pp. 1–7.

 [2] A. Mallik et al., “Design-technology co-optimization for

OxRRAM-based synaptic processing unit,” in Proc.

VLSIT, 2017, pp. T178–T179.

 [3] W. Shim et al., “Impact of read disturb on multilevel

RRAM based inference engine: Experiments and

model prediction,” in Proc. IRPS, 2020, pp. 1–5.

 [4] V. Milo et al., “Multilevel HfO2-based RRAM devices for

low-power neuromorphic networks,” APL Mater., vol. 7,

no. 8, 2019, Art. no. 081120.

 [5] S. Song et al., “Improving inference lifetime of

neuromorphic systems via intelligent synapse

mapping,” in Proc. ASAP, 2021, pp. 17–24.

 [6] A. Balaji et al., “NeuroXplorer 1.0: An extensible

framework for architectural exploration with spiking

neural networks,” in Proc. ICONS, 2021, pp. 1–9.

 [7] S. Han et al., “Deep compression: Compressing deep

neural networks with pruning, trained quantization and

Huffman coding,” 2015, arXiv:1510.00149.

 [8] A. Chaudhuri et al., “Hardware fault tolerance for

binary RRAM crossbars,” in Proc. ITC, 2019, pp. 1–10.

 [9] T. Spyrou et al., “Neuron fault tolerance in spiking

neural networks,” in Proc. DATE, 2021, pp. 743–748.

 [10] T. Titirsha et al., “Endurance-aware mapping of spiking

neural networks to neuromorphic hardware,” IEEE

Trans. Parallel Distrib. Syst., vol. 33, no. 2, pp. 288–301,

Feb. 2022.

 [11] A. Paul et al., “Design technology co-optimization for

neuromorphic computing,” in Proc. IGSC Workshops,

2021, pp. 1–6.

 [12] A. Balaji et al., “Mapping spiking neural networks

to neuromorphic hardware,” IEEE Trans. Very Large

Scale Integr. (VLSI) Syst., vol. 28, no. 1, pp. 76–86,

Jan. 2020.

Ankita Paul is pursuing a PhD with Drexel Uni-
versity, Philadelphia, PA 19147 USA, under the
supervision of Dr. Anup Das. Her research interests
include brain inspired computing, deep learning,
and machine learning. Paul has a bachelor’s degree
from the West Bengal University of Technology,
Kolkata, India.

Shihao Song is pursuing a PhD with Drexel
University, Philadelphia, PA 19147 USA, under the
supervision of Dr. Anup Das. His research interests
include computer architecture, non-volatile mem-
ory, and compiler design for neuromorphic hard-
ware and accelerators. Song has a bachelor’s from
Drexel University.

Twisha Titirsha is pursuing a PhD with the
Department of Electrical and Computer Engineering,
Drexel University, Philadelphia, PA 19147 USA. Her
research interests include computer architecture,
non-volatile memory, and mixed-signal circuit design.
Titirsha has a bachelor’s from the Military Institute of
Science and Technology, Dhaka, Bangladesh.

Anup Das is an assistant professor at Drexel Uni-
versity, Philadelphia, PA 19147 USA. His research
focuses on neuromorphic computing and archi-
tectural exploration. Das has a PhD in embedded
systems from the National University of Singapore,
Singapore. He is a Senior Member of IEEE.

 Direct questions and comments about this article
to Anup Das, Department of Electrical and Com-
puter Engineering, Drexel University, Philadelphia,
PA 19147 USA; anup.das@drexel.edu.

1092168-2364/22©2022 IEEECopublished by the IEEE CEDA, IEEE CASS, IEEE SSCS, and TTTCMarch/April 2023

Using STLs for Effective
In-Field Test of GPUs

 Modern graphics processing units (GPUs)
are manufactured using cutting-edge technologies
but are prone to suffer from in-field errors and reliabil-
ity issues [1]. The flexibility and computational power
of GPUs push their adoption in developing advanced
driver-assistance systems (ADASs) and sensor fusion
solutions in the automotive and autonomous systems
domains. However, the premature aging and wear-out
features in new transistor technologies promote the
rising of permanent faults during the in-field opera-
tion. In safety-critical applications, unaffordable fail-
ures caused by faults can induce the entire system
to fail or even result in catastrophic consequences if
no appropriate measures are taken promptly. Hence,
the development of countermeasures for the in-field
detection of faults is of great importance in GPUs.

Published works,
addressing in-field fault
detection for GPUs, can
be classified into three
classes: 1) design for
testability (DfT) meth-
ods, which are purely

hardware-oriented; 2) hybrid approaches, which
combine hardware structures with reconfigur-
able capabilities at the software level; and 3) soft-
ware-based self-test (SBST) solutions. DfT schemes
are widely used for the end-of-production test in cur-
rent devices. However, they are not always available
for in-field operation and may not satisfy time con-
straints in many applications. Furthermore, hybrid
solutions, based on the addition or use of available
structures (i.e., performance counters) to extend the
fault observability of a module, must be included in
the design phases by modifying the hardware–soft-
ware interface to provide instruction-based control
of the included structures. Jagannadha et al. [2]
proposed an in-system-test architecture based on the
combination of DfT schemes and hybrid structures
to detect faults and provide diagnosis features dur-
ing the in-field operation of system-on-chips (SoCs)
and GPUs. However, a massive effort is required to

Digital Object Identifier 10.1109/MDAT.2022.3188573

Date of publication: 5 July 2022; date of current version:

10 March 2023.

Josie E. Rodriguez Condia
Politecnico di Torino
10129 Turin, Italy

Felipe Augusto da Silva
Cadence Design Systems
85622 Munich, Germany
Delft University of Technology
2028 Delft, The Netherlands

Ahmet Çağrı Bağbaba
Cadence Design Systems
85622 Munich, Germany
Tallinn University of Technology
19086 Tallinn, Estonia

Editor’s notes:
GPUs have seen an increased adoption in autonomous systems. This
article assesses the fault coverage that can be attained through software
self-test strategies for in-field test of GPUs.

—Nicola Nicolici, McMaster University

Juan-David Guerrero-Balaguera
Politecnico di Torino
10129 Turin, Italy

Said Hamdioui
Delft University of Technology
2028 Delft, The Netherlands

Christian Sauer
Cadence Design Systems
85622 Munich, Germany

Matteo Sonza Reorda
Politecnico di Torino
10129 Turin, Italy

110 IEEE Design&Test

General Interest

develop and integrate a coordinated ecosystem to
design and verify the device. On the other hand, the
SBST strategy is a noninvasive and flexible approach
to perform functional in-field tests of proces-
sor-based systems, which has been widely adopted
in processor testing [3]. Nowadays, semiconductor
companies and IP providers give SBST support for
their safety-critical products (e.g., automotive). In
detail, the SBST strategy resorts to specially written
software-test libraries (STLs) composed of suitably
developed test programs (TPs) able to achieve a
given structural fault coverage (FC) when run by the
CPU with limited or null external support. A TP is a
suitable sequence of selected instructions applying
test patterns to a given unit and propagating fault
effects up to some observation points. These are
typically developed starting from high-level abstrac-
tions of a design (RT-level) and then progressively
reaching and refined at lower levels (Gate-level).
Moreover, TPs can often be split into small chunks
of code fitting in the idle times of an application and
thus more easily matching time constraints. In the
past, numerous works developed effective STLs for
CPUs. However, only a few works used SBST strat-
egies for in-field tests in GPUs. Clearly, some of the
techniques used for CPUs can be extended to GPUs
as well. Nevertheless, GPUs have some specific fea-
tures and characteristics (e.g., implicit parallelism,
parallel scheduling, and shared memory manage-
ment), which demand special strategies to test the
corresponding hardware modules. Di Carlo et al. [4]
adopted several processor-based techniques into TPs
for the execution units, register files, and main mem-
ories in a GPU. Nevertheless, observability issues
restricted the assessment of the FC. Another work
[5] addressed the test of control units (scheduling
controller). However, the development of custom-
ized approaches was required. In conclusion, prior
works on in-field tests are unaffordable due to huge
complexity and intrusiveness (DfT and hybrid cases)
or suffer from generality (SBST case), making them
not fully suitable for GPUs. Hence, there is a need of
providing a complete solution for in-field tests.

This work, for the first time, evaluates the over-
all effectiveness of employing the SBST strategy for
the in-field test of all logic modules of a GPU core.
Moreover, this work experimentally quantifies the
FC achievable on the logic modules in a GPU core.
Finally, it evaluates how suitable STLs can support the
failure modes and effects analysis (FMEA) required

in all safety-critical domains. The main contributions
of this work can be summarized as follows.

• A general overview of the characteristics and
strategies to develop STLs for GPUs.

• An evaluation (the first publicly available, to the
best of our knowledge) of the overall FC obtained
on a GPU core with the STL execution.

• A report about the failure modes effects and diag-
nostic analysis (FMEDA) process on a GPU core
using STLs as the only fault-tolerance mechanism.

This work resorts to the FlexGripPlus model,
describing one low-level microarchitecture of
NVIDIA, to evaluate and validate the development
of STLs for GPUs. The experimental results show
that up to 92.6% of the stuck-at faults (SAFs) in the
logic blocks of a GPU core can be covered using the
STLs we developed. The FMEDA analysis shows that
these results enable to qualify the considered mod-
ules inside a GPU core via STLs at least for the ASIL
B level. Higher levels can be achieved by combining
the STLs with other safety mechanisms.

Architectural organization of GPUs

General overview
This section employs NVIDIA’s terminology to

describe the architectural organization of a GPU.
GPUs are special-purpose processors organized

as arrays of parallel cores [streaming multiproces-
sors (SMs)]. Each SM adopts the single-instruction
multiple-data (SIMD) paradigm or variations, such as
single-instruction multiple-thread (SIMT) by NVIDIA.
Internally, each SM comprises several pipeline stages
and uses a specific instruction set architecture partly
resembling RISC ones with extensions to support
parallelism.

A host controller (CPU) submits a parallel pro-
gram to the GPU for processing. Then, the program
is distributed among the available SMs by the sched-
ulers. Internally, the scheduler controllers man-
age and trace the operation of a group of threads
(warp), which are operated in parallel on individual
execution units [scalar/streaming processors (SPs)].
Each SP is composed of an integer (INT) and a float-
ing-point core (FP). Moreover, the SM includes other
hardware accelerators (SFUs) as well.

Each SM has access to several levels of the mem-
ory hierarchy (register file, shared, local, constant,
and main memory). The register file and the shared

111March/April 2023

memory are organized in banks for parallel access
and store the individual and shared operands and
results for each thread, respectively. Both resources
and the first levels of cache are located inside the
SM. The second-level caches, the constant, and the
main memories are located outside as a shared
resource among the SMs.

FlexGripPlus model
FlexGripPlus is an open-source soft-GPU model

based on the NVIDIA G80 microarchitecture and
fully described in VHDL [6]. FlexGripPlus is compat-
ible with the CUDA programming environment (SM
1.0) and is based on a set of SMs supporting up to 52
assembly (SASS) instructions.

Each SM is divided into five pipeline stages (Fetch,
Decode, Read, Execute/Control-Flow, and Write), as
shown in Figure 1. The number of SPs in the Execute
stage is configurable among 8, 16, or 32. Moreover,
pipeline registers (“PRx”) are located between the
pipeline’s stages. Each SM also includes three regis-
ter files (Vector Register File “VRF”), (Address Regis-
ter File “ARF”), and (Predicate Register File “PRF”),
devoted to storing operands, addresses, and predi-
cate flags of each thread, respectively.

Each SM includes one scheduler controller and a
divergence management unit (DMU) for intra-warp
divergence control and execution.

In general, the FlexGripPlus model holds the same
basic functional modules of a commercial GPU,
including scheduler controllers, parallel execution
units, file registers, and pipeline stages. Nevertheless,
the current memory hierarchy in FlexGripPlus differs
from the included in commercial devices by missing
the cache memories.

Despite the few structural limitations, the Flex-
GripPlus model includes a low-level detailed
microarchitectural description of an NVIDIA GPU
and is employed as a tool to evaluate the effective-
ness of STLs for GPUs developed using the SBST
strategy.

SBST strategies for GPUs
STLs developed with the SBST strategy can be

deployed as complementary mechanisms to moni-
tor the status of a GPU during its operative life and
contribute to identifying possible fault effects. In
fact, the main advantage of STLs is the ability to
detect faults with zero hardware costs. Moreover,
STLs test a device at the operational speed and nor-
mal conditions, thus also addressing delay faults and
avoiding overtesting.

In the functional-safety domain, the identification
and management of faults in a device are manda-
tory. Some faults can be classified as safe, when they
are proved not to be able to produce any failure in

Figure 1. General scheme of an SM in FlexGripPlus.

112 IEEE Design&Test

General Interest

the considered operational scenario. Safe faults are
not considered when computing the achieved FC.

In this domain, STLs can be used as safety mech-
anisms and increase reliability by guaranteeing the
in-field detection of a sufficient percentage of faults,
thus matching the requirements of the functional
safety standards, possibly in combination with other
mechanisms (e.g., ECC for memories, and watch-
dogs). STLs are widely used for CPUs but they can
also be adopted for accelerators, such as GPUs,
which demand periodic testing solutions when used
in safety-critical applications. In this case, we must
consider two main features: 1) most in-field faults
in GPUs can only be observed by looking at results
they produce in memory (as the main observation
point) and 2) the development of TPs requires
architectural details from a targeted unit. In gen-
eral, any TP is mainly executed following four steps:
1) initialization; 2) test pattern’s injection; 3) fault
effect’s propagation to any observation point; and
4) identification (see Figure 2). In the execution of
a TP, several loops can apply different test patterns
or propagate their effects. However, TPs for GPUs
must face the addressing of each module exploiting
the implicit parallelism and operational constraints
(e.g., divergence and thread-synchronization). For
this purpose, these TPs must exploit three main char-
acteristics of the parallel operation of GPUs.

• Instruction parallelism.
• Distributed scheduling.
• Management of functional units and memory

resources.

The following sections summarize some specific
strategies and algorithms used in the development
of TPs for STLs targeting GPUs. It should be noted
that each GPU module may require a combination
of different approaches. Fortunately, one TP may tar-
get the test of several modules in parallel.

Extending functional test techniques from
CPUs to GPUs

Two approaches originally developed for CPUs
can be adopted and extended to the GPU domain:
automated and deterministic [3], [7].

On the one hand, the automated approaches
comprise pseudorandom- and ATPG-based meth-
ods. The first method focuses on TPs based on a
group of instructions randomly selected in combi-
nation with pseudorandom operand values. This

method can exploit evolutionary algorithms to select
the most suitable instructions and operands for a TP.
The second method resort to Automatic Test Pattern
Generation (ATPG) tools to analyze and extract test
patterns from a hardware module. Then, these pat-
terns are translated into equivalent instructions, so
composing one or more TPs. However, it is possible
that some test patterns cannot be translated and
must be ignored (possibly resulting in safe faults). In
both cases, several iterations are used in the devel-
opment of each TP to improve its correct operation
and reduce unnecessary overhead costs for the
in-field operation.

In any case, TPs using either automated or deter-
ministic approaches must include three strategies: 1)
parallel pattern management (PPM); 2) signatures
per thread (or SpT) [9]; and 3) parallel injection.

The first strategy (PPM) organizes and aligns simi-
lar test patterns and expected results as consecutive
memory operands, so optimizing the performance
in memory management and exploiting possible
execution loops. Then, each thread in the TP can
address individual or shared test patterns from
memory.

The SpT mechanism is based on the computa-
tion, within each thread in a TP, of a signature pro-
viding fine-grain fault-observability out of the values
produced by the target module during its operation,
thus propagating fault effects as errors on the com-
puting signature and allowing fault detection. Each
SpT is described and computed in software by mim-
icking a multiple-input shift register or a counter,
which reduces the number of instructions per TP
while providing extended observability. In the end,
each SpT is stored in memory. The GPU itself (or the
host) checks for the presence of faults by comparing
a produced signature with the expected one, which
is precalculated by the TP itself (in the development
and verification phases) with minimal performance
overhead (<5%) and finally stored in specific mem-
ory regions available during the operation of the TPs.
Those precalculated golden signatures avoid laten-
cies at the in-field operation of TPs.

The parallel injection techniques take advantage
of thread parallelism in warps or blocks to excite a
module with different test patterns (one per thread),
thus exploiting parallelism to increase the opera-
tional performance of a TP, which is effective in
either individual unit or regular structures.

113March/April 2023

Pseudorandom and ATPG-based approaches are
effective in regular structures of a GPU, such as the
functional units and the register file, since these struc-
tures are addressed (and tested) in parallel. Moreo-
ver, the static organization and the understanding
of distribution policies in the schedulers allow the
development of embarrassingly parallel TPs (see
Figure 2), exploiting the multithread parallelism to
inject patterns and also reducing the in-field exe-
cution of TPs [8]. On the other hand, deterministic
approaches exploit the functionality and structure in
a module to deploy well-defined algorithms, such as
March algorithms for internal memories (e.g., within
the controllers) [4].

It must be noted that, when using a deterministic
approach, the adaptation of a method may require
additional steps (i.e., initialization and propagation
patterns) to face the parallel operational constraints
in a GPU, but additional efforts are required to con-
trol intrawarp divergences, thread synchronizations,
and concurrent loops when injecting test patterns, as
depicted in Figure 2.

Multikernel approach
TPs in this approach utilize a divide-and-conquer

strategy to target special modules commonly man-
aging configuration parameters devoted to con-
trolling and configuring the parallel operation in a
GPU. These configuration parameters (i.e., memory
addresses, number of threads, blocks, grids, and

registers per thread) come from the program and
configure modules (i.e., the constant memory and
the schedulers) for the operative interval of the
program.

In this case, multiple TPs (kernels) employ the pol-
icies of scheduling and the resource’s management
to target a different set of faults inside a module.
More in detail, each TP uses different combinations
of configuration parameters, which also serve as
indirect test patterns, so activating different regions
(and exciting possible faults) in a module. The mul-
tikernel approach is effective when testing modules
managing parallel parameters, such as the sched-
uling controllers and the pipeline registers. Further
details can be found in [9]. Finally, this approach
can be extended to other modules with similar fault
activation and propagation restrictions (i.e., global
schedulers outside the SM).

Modular kernel approach
This approach exploits a top-down strategy to

develop modular routines to build TPs for complex
units in a GPU. The modular description of a routine
starts from a high abstraction level and is then cus-
tomized. In this approach, the most suitable instruc-
tions to activate and propagate faults inside the
target unit are selected considering two factors: 1)
the parallel observability and controllability features
and 2) the architectural description and operational
constraints of a target unit.

Figure 2. General scheme of the execution flow of TPs for CPUs and GPUs.

114 IEEE Design&Test

General Interest

First, the controllability and observability features
are determined for a target unit. In this case, suitable
instructions (i.e., “Push” and “Pop” in a stack) are
used to provide both features as initial conditions
in a TP. Then, several routines to inject test patterns
while exploiting parallelism are designed (in CUDA
or SASS) and linked, considering the operational
constraints of the unit. These routines are the basic
components of a TP and describe the operation of
any thread. The flexibility of the approach allows the
development and exploration of several parallel rou-
tines providing the same functionality. Moreover, the
execution flow in a TP can be adopted according to
the selected routines. Finally, the routines are inte-
grated as a single TP and refined for performance
or FC.

The modular approach is effectively applied to
complex units in a GPU, such as the DMU and the
embedded memories [10].

Customs approaches
The custom approaches require the manual devel-

opment of TPs following some specific algorithm
that takes into account the architecture of the units,
their functional operation, the expected behavior,
their restrictions, and the target fault model. These
TPs target particular modules in the GPU, which do
not exist in CPUs (such as the scheduler controllers
[5] and the special-purpose memories [4]). In detail,
the TPs are based on algorithms causing controlled
divergence, the combination of sequences of embar-
rassingly parallel, and serial-thread executions on a
set of threads to excite and propagate fault effects.

This approach requires a deep knowledge of the
GPU’s low-level microarchitectural details, their par-
allel operations and the use of parallelism, distrib-
uted scheduling, and available hardware resources
to provide specific test solutions per module.

Setup and preliminary GPU analysis
The evaluation of the STLs (developed using

all techniques described in the previous section)
resorted to a commercial fault simulation environ-
ment targeting the units in the FlexGripPlus model.
This framework uses the RT-level description of the
GPU and evaluates each TP by injecting SAFs into
the logic of every logic module.

In the experiments, we targeted the evaluation of
all logic modules and embedded memories in the
GPU core. One fault is detected when at least one

mismatch is found after comparing results from a
golden execution and a faulty one. The flexibility of
the tool allows the selection of the memory buses
and the output control signals as the main in-field
observation points of faults. It is worth noting that the
main memory and the memory controllers were not
targeted, since these are not part of the GPU core.

Three preliminary architectural analyses identi-
fied safe faults in the GPU. The first analysis is based
on the architectural propagation analysis, which
consists of evaluating the propagation paths of each
fault in the design up to the observability points. In
addition, the fault activation analysis evaluates the
inputs of the GPU and identifies those faults that can-
not be excited. Finally, a barrier analysis provides
the analysis of the structural and operational effects
of removing modules in the GPU [11].

Table 1 reports the number of identified safe faults
in the FlexGripPlus SM. Interestingly, the fault propa-
gation analysis effectively identified most of the safe
faults per module (>90%). The other two methods
effectively identified faults in the GPU’s special struc-
tures, such as inside the scheduler. A postchecking
process was required to determine any detectable
and dangerous fault (i.e., faults in locations that
remain temporarily fixed by the effect of the kernel
or host configuration, but in other conditions, these
may cause misbehaviors), so removing them from
the list of safe faults.

STL effectiveness evaluation
In the experiments, FlexGripPlus was configured

with one SM and 32 SPs. A set of 18 TPs were imple-
mented using the methods outlined in the previous
section. Each TP is developed according to the unit’s
features.

Three automatic TPs targeted the functional units
and the decode unit by exploiting instructions that

Table 1. Untestable fault identification.

115March/April 2023

excite as many patterns (operands) as threads on

them. Moreover, three deterministic and modular

TPs targeted the embedded memories, using the

operational features (writing and reading methods)

to excite the units. Nine TPs used the multikernel

approach targeting programmable pipeline registers.

Finally, three custom TPs focus on exciting control-

lers and dispatchers in the GPU.

In the end, 15 fault injection campaigns were per-

formed on the complete GPU model, after generat-

ing the full list of SAFs, safe faults were first removed.

Moreover, in the fault campaigns, the total number

of faults (327,207) was reduced by injecting faults

only in one module among the regular modules

in the GPU (i.e., one SP and the associated regis-

ter file per core, instead of the 32 execution units).

As a result, in each fault simulation campaign, we

injected 141,140 SAFs.

Since the current version of FlexGripPlus does

not include accurate descriptions of the caches, the

memory controllers were not addressed.

Table 2 reports the obtained FC figures. As

observed, the developed STLs mainly focused on the

largest modules in the GPU’s core architecture, such

as the execution units, internal logic, and embed-

ded memories, which account for more than 90%

of faults in an SM. Although some TPs provide mod-

erate fault detection in some modules of the GPU

(e.g., controllers), the small size of these structures

does not significantly affect the overall FC in the GPU

core. Further efforts could be made to develop suita-

ble TPs specifically addressing these modules.

Previous results demonstrate that STLs can

be effectively developed and provide a high FC.

Although the obtained results were focused on

one GPU core, the implemented TPs are scalable

and results can be extended to multi-SM GPUs.

Furthermore, the development of STLs can be
applied to other GPU architectures.

Functional-safety evaluation
The calculation of the FC is an indication of the

design safety based on the efficiency of a given
safety mechanism (SMech). However, it is not suf-
ficient to assure compliance with functional safety
standards, like ISO26262; for such a purpose, we
need to determine the reduction in the probability
of system failures, also known as the failure in time
(FIT) rate. The single-point faults metric (SPFM),
which represents permanent faults’ potential to
violate safety-related functionalities, is defined by
ISO26262 as evidence of safety integrity [12]. The
SPFM considers the total FIT rate (λ) and the contri-
bution of the fault classes.

• Single-point faults (λSPF): Not covered by
SMechs.

• Residual faults (λR): Undetected by SMechs.

The SPFM can be calculated according to

SPFM = −

∑ +()

∑

1
λ λ

λ

SPF R
.

(1)

The primary methodology for determining the
safety metrics parameters is the FMEDA, which cor-
relates IC components (Gates, Flip-flops, and Memory
cells) to failure modes (FMs). Then, by computing λ
of individual IC components, the FC, and the Safe
faults, we can determine the total λ of each FM.

First, the FMs are defined and the design com-
ponents mapped. For FlexGripPlus, we considered
28 subparts (components inside the GPU core,
including local controllers, functional units, embed-
ded memories, and registers). Each subpart was
analyzed to determine function-specific FMs. After
mapping each FM to the appropriate design com-
ponent(s), we evaluate the percentage of Safe faults
and the FC. The FlexGripPlus’ FMEDA comprises 92
FMs mapped to 2,751,088 gates, 1,507,085 flops, and
784,224 memory cells.

The analysis of FlexGripPlus, considering the
15-nm FinFET-based Open Cell Library, resulted in a
total λ of 10.08 FIT (based on IEC 62380 Electronic
Reliability Prediction Standard), which defines a
base FIT Rate for the components of a given tape-out
technology. In this case, the unit’s base FIT consid-
ers digital (NAND2 gate’s area) and memory (cell’s
area) components. Then, we multiply the number

Table 2. FC results per module.

116 IEEE Design&Test

General Interest

 [5] S. D. Carlo, J. E. R. Condia, and M. S. Reorda, “An on-

line testing technique for the scheduler memory of a

GPGPU,” IEEE Access, vol. 8, pp. 16893–16912, 2020.

 [6] J. E. R. Condia et al., “FlexGripPlus: An improved

GPGPU model to support reliability analysis,”

Microelectron. Rel., vol. 109, Jun. 2020, Art. no.

113660.

 [7] P. Bernardi et al., “Development flow for on-line core

self-test of automotive microcontrollers,” IEEE Trans.

Comput., vol. 65, no. 3, pp. 744–754, Mar. 2016.

 [8] J.-D. Guerrero-Balaguera, J. E. R. Condia, and M. S.

Reorda, “On the functional test of special function

units in GPUs,” in Proc. 24th Int. Symp. Design Diag.

Electron. Circuits Syst. (DDECS), Apr. 2021,

pp. 81–86.

 [9] J. E. R. Condia and M. S. Reorda, “Testing permanent

faults in pipeline registers of GPGPUs: A multi-kernel

approach,” in Proc. IEEE 25th Int. Symp. On-Line Test.

Robust Syst. Design (IOLTS), Jul. 2019, pp. 97–102.

 [10] J. E. R. Condia and M. S. Reorda, “Modular functional

testing: Targeting the small embedded memories in

GPUs,” in Proc. VLSI-SoC (Design Trends Series),

2021, ch. 10.

 [11] F. A. da Silva et al., “Determined-safe faults

identification: A step towards ISO26262 hardware

compliant designs,” in Proc. IEEE Eur. Test Symp.

(ETS), May 2020, pp. 1–6.

 [12] Y.-C. Chang et al., “Assessing automotive functional

safety microprocessor with ISO 26262 hardware

requirements,” in Proc. Tech. Papers Int. Symp. VLSI

Design, Autom. Test, Apr. 2014, pp. 1–4.

Josie E. Rodriguez Condia is interested
in functional testing, parallel architectures, and
embedded system design. Rodriguez Condia has a
PhD in computer engineering from the Politecnico di
Torino, 10129 Turin, Italy, and an MSc in electronics
from the Universidad Pedagógica y Tecnológica de
Colombia (UPTC), Tunja, Colombia. He is a Member
of IEEE.

Felipe Augusto da Silva is pursuing a PhD
in functional safety with Cadence Design Systems,
85622 Munich, Germany, and the Delft University of
Technology, 2028 Delft, The Netherlands. He works
on functional safety projects for the automotive, aero-
space, and defense industries. Da Silva has an MSc
in electrical and electronics engineering from the
Federal University of Santa Catarina (UFSC), Flori-
anópolis, Brazil.

of gates and cells, mapped to each FM, by the dig-
ital and memory FITs, respectively; from these, the
implemented safety strategies provide the following
results:

• Detected by the STL: 9.17 FIT.
• Undetected (λR): 0.57 FIT.
• Safe faults (λS): 0.33 FIT.

Finally, reducing λR by increasing λS and FC
directly impacts the SPFM. The proposed Safety tech-
nique based on only STLs for FlexGripPlus resulted
in an SPFM of 94.27%, allowing ASIL B assessment
without hardware modifications to the logic units of
an SM and without any other SMech.

This work is the first to provide a quantitative eval-
uation of the effectiveness of STLs for the in-field test-
ing of GPU cores. The reported results showed that an
SAF coverage of more than 92% could be obtained
on the logic modules and embedded memories. The
functional-safety results (SPFM of 94.27%) show the
effectiveness of STLs as a safety mechanism for SMs
in GPUs.

The resulTs allow us to state that the SBST strat-
egy can be used as an effective solution, possibly
combined with other strategies, to guarantee the
reliability and functional safety of GPU-based appli-
cations for safety-critical domains.

Acknowledgments
This work was supported by the European Com-

mission through the Horizon 2020 RESCUE-ETN Pro-
ject under Grant 722325.

 References
 [1] D. Tiwari et al., “Reliability lessons learned from GPU

experience with the Titan supercomputer at oak ridge

leadership computing facility,” in Proc. Int. Conf. High

Perform. Comput., Netw., Storage Anal., Nov. 2015,

pp. 1–12.

 [2] P. K. D. Jagannadha et al., “Special session: In-

system-test (IST) architecture for NVIDIA drive-AGX

platforms,” in Proc. IEEE 37th VLSI Test Symp. (VTS),

Apr. 2019, pp. 1–8.

 [3] M. Psarakis et al., “Microprocessor software-based

self-testing,” IEEE Design Test Comput., vol. 27, no. 3,

pp. 4–19, May/Jun. 2010.

 [4] S. Di Carlo et al., “A software-based self test of CUDA

Fermi GPUs,” in Proc. 18th IEEE Eur. TEST Symp.

(ETS), May 2013, pp. 1–6.

117March/April 2023

Ahmet Çağrı Bağbaba is with Cadence
Design Systems, 85622 Munich, Germany. His
research interests include hardware functional safety
verification in the context of ISO26262, a digital and
embedded system design. Bağbaba has a PhD in
computer and systems engineering from the Tallinn
University of Technology, Tallinn, Estonia, and an MSc
in electronics and telecommunication engineering
from Istanbul Technical University, İstanbul, Turkey.

Juan-David Guerrero-Balaguera is pur-
suing a PhD with the Department of Control and
Computer Engineering, Politecnico di Torino, 10129
Turin, Italy. His research interests include functional
testing, artificial intelligence, and parallel architec-
tures. Guerrero-Balaguera has an MSc in electronics
from the Universidad Pedagógica y Tecnológica de
Colombia (UPTC), Tunja, Colombia. He is a Member
of IEEE.

Said Hamdioui is the Chair Professor and the
head of the Department of Quantum and Computer
Engineering, Delft University of Technology, 2028
Delft, The Netherlands. His research interests include
hardware dependability and emerging computing
paradigms. He is a Senior Member of IEEE and
serves on the Editorial Board of IEEE Design&Test.

Christian Sauer is the head of the European
System Design Enablement Team, Cadence Design
Systems, 85622 Munich, Germany. He works on cus-
tomer-specific projects developing tailored solutions
for cutting-edge SoCs and systems across automo-
tive and 5G domains. His research interests include
the development of application-specific multiproces-
sor platforms, tools, and methodologies for their
applications.

Matteo Sonza Reorda is a full professor with
the Department of Control and Computer Engineer-
ing, Politecnico di Torino, 10129 Turin, Italy. His
research interests include the design and test of reli-
able electronic circuits and systems. Sonza Reorda
has a PhD in computer engineering from the Politec-
nico di Torino. He is a Fellow of IEEE.

 Direct questions and comments about this article
to Josie E. Rodriguez Condia, Politecnico di Torino,
10129 Turin, Italy; josie.rodriguez@polito.it.

118 2168-2364/22©2022 IEEE Copublished by the IEEE CEDA, IEEE CASS, IEEE SSCS, and TTTC IEEE Design&Test

General Interest

T-Topology Coupler-Based
Bandpass Negative
Group Delay Active Circuit
Design and Test

 The counTerinTuiTive negaTive group delay
(NGD) function was theoretically and experimen-
tally investigated with low-frequency circuit topol-
ogies in the 1990s [1]. The meaning of the NGD
function was experimentally interpreted with the
counterintuitive propagation of output signal raising
and trailing edges in advance compared to its input
[2]. This extraordinary effect does not contradict

the causality principle.
Then, the orthodoxly
circuit theory with the
revelation of basic NGD
circuit topologies was
introduced [3]. To fur-
ther understand the NGD
function interpretation,

a circuit theory emphasizing the similitude with the
analog filter behavior was proposed [3]. Because of
its counterintuitive effect, the unfamiliar NGD effect
causes skepticism in the circuit engineering commu-
nities. Since the first experimentation, the NGD topic
attracted the curiosity of a few electronic and RF/
microwave researchers. One of the remarkable peri-
ods was the early 2000s where the NGD function dis-
closure coincided with the RF and microwave met-
amaterial revolution [4]. Then, the left-hand-based
NGD circuit was validated with different analytical
approaches as the consideration of resistive loss [5].

Digital Object Identifier 10.1109/MDAT.2022.3202858

Date of publication: 29 August 2022; date of current version:

10 March 2023.

Taochen Gu and Fayu Wan
School of Electronic and Information Engineering
Nanjing University of Information Science &
Technology (NUIST)
Nanjing 210044, China

Jingjie Zhou
Nanjing Institute of Measurement and Testing
Technology
Nanjing 210049, China

Qizheng Ji
National Key Laboratory on Electromagnetic
Environment Effects
Army Engineering University of PLA
Shijiazhuang 050003, China

Editor’s notes:
This article develops a design method for the bandpass negative group
delay active microwave circuits. The theoretical calculations, simulation
results, and measurements on a tested prototype show excellent
consistency.

—Haralampos Stratigopoulos, Sorbonne Université, CNRS, LIP6

Binhong Li
Key Laboratory of Silicon Device Technology
Chinese Academy of Sciences
Beijing 100029, China

Blaise Ravelo
School of Electronic and Information Engineering
Nanjing University of Information Science &
Technology (NUIST)
Nanjing 210044, China

119March/April 2023

However, the metamaterial aspects based on NGD
passive circuits suffer from excessively high attenua-
tion losses that may reach 20 dB [4] with only a single
cell. The circuit loss problem was also found with the
resonant resistor–inductor–capacitor (RLC)-network
nonmetamaterial NGD circuits. In other words, the
NGD values become insignificant if the attenuation
loss is excessively high. This technical weakness of
NGD functions raises curious questions about the
general applications as proposed in [6], [7], and [8].
The tentative fields of application concern group
delay (GD) equalization, bilateral gain compensated
circuits, frequency-independent phase shifter, and
nonfoster element design. To solve the problems
caused by the insertion loss, more research work
efforts have been made since the early 2010s on the
design of RF and microwave NGD active circuits [9],
[10], [11]. These existing lumped NGD active circuits
are susceptible to compensate for the attenuation
loss but their constituting lumped RLC networks can-
not work at a high frequency above gigahertz. Thus,
the present research work focuses on the design of
active and T-topology bandpass (BP) NGD function
with the transmission line (TL) theory. The main nov-
elty and contribution of the article in difference from
the existing NGD work [11] are

• Theorization of the distributed and active BP
NGD topology using a coupled line (CL)-based
T-cell passive topology. The overall BP NGD cir-
cuit under study is comprised of a distributed
passive T-cell compensated by a microwave
amplifier.

• Design method of the active circuit in terms of
the available expected BP NGD specifications.
Choice and integration of low noise amplifier
(LNA) to target NGD specifications (NGD center
frequency, NGD value, and NGD bandwidth) and
loss compensation.

Design, simulation, and experimental
validations of the NGD T-topology

This section introduces the S-matrix modeling of
the passive T-topology. The BP NGD analysis is per-
formed in function of the circuit parameters.

T-Topological description
Figure 1a shows the equivalent circuit of the T-topol-

ogy that acts as a two-port circuit built with fully dis-
tributed passive structures: Two identical CLs denoted

CL1 and CL2 with identical characteristic impedance
Z, attenuation a, propagation delay τ, and coupling
coefficient k. In Figure 1a, CL1 and CL2 are references
with ports, (①, ③, ④, ⑤) and (②, ③, ⑥, ⑦), respectively.
An open-ended stub is represented by a TL having
identical characteristic impedance Z, attenuation a,
and propagation delay τ. As seen in Figure 1a, this TL
is connected between port ⑤ and port ⑦. The global
S-matrix model is determined based on the equivalent
circuit. As introduced in Figure 1b, the TL is reduced as
a parallel impedance Zin. According to the TL theory,
by denoting the terminal load reference impedance,
R0 = 50 Ω, s = jω the Laplace variable and the angular
frequency variable ω, the TL input impedance is given
by

 Z s R Z a s a sin() / exp() / exp()= − −

+ −

0

2 2 21 2 1 2τ τ . (1)

Magnitudes of the T-topology reflection and
transmission coefficients

Similar to the classical microwave circuit analy-
ses, before the NGD analysis, it is crucial to perceive
the frequency responses of the T-topology S-parame-
ter coefficients. Accordingly, the associated magni-
tudes of the transmission coefficients are

S S j

R k

a

a

a
21 21

0
2

2 2

2 2 2

2 2

2 1 1

() ()

()

[sin ()

cos ()]

sin (
ω ω

ωτ

ωτ

= =

−

+

−

+ ωωτ ωτ

ζ ω

)cos ()
()

2

 (2)
with

ζ ω

ωτ

()

() cos()

()=

2 1 2

2 2

0
2 2 2

2
0 0

2
R k k Z a

k R Z R

− + +

+ −

+aa k R Z R4 2 2
0 0

2
2 2sin () ()θ ω[] − +

 (3)

where k is the coupling coefficient. We recall that
the phase shift associated with the transmission

Figure 1. (a) Configuration of the T-topology under
study. (b) Open stub input impedance.

120 IEEE Design&Test

General Interest

coefficient is defined by ϕ ω ω() arg ()= []S j21 .
According to the circuit and system theory, the GD
can be derived from the transmission coefficient as
follows:

 GD() () /ω ϕ ω ω= −∂ ∂ . (4)

Knowing the transmission phase, the reverse T-topol-
ogy GD can be analytically calculated from this pre-
vious expression.

NGD analysis at very low frequency
One of the natural particular frequencies, which

can be investigated for the NGD existence, is the lowest
frequency value. The NGD can be analyzed from the
GD in (4). At very low frequency, GD GD0 0= ≈()ω ,
the reverse T-topology presents the following GD:

GD0

2 2
0

2

0
2 2 2 2 2 2 2

2 1

2 1
=

− −

− − + + +

π ωa k Z a

R a k a k Z a k

/ / ()

() ()
. (5)

We emphasize that this GD can be negative if

 2 1 00
2 2 2 2 2 2 2R a k a k Z a k() ()− − + + + > . (6)

Therefore, the topology under study can behave
as a low-pass NGD circuit but this type is out of the
range of the present study.

NGD analysis at resonance frequency
The second particular frequency of the topology

under study can be resonance ω = ω0. At this fre-
quency, the GD is transformed as

GD GD= =
+

− − + + −

()
/ / ()

() ()
ω

π ω

0

2 2
0

2

0
2 2 2 2 2 2

2 1

2 1 1

a k Z a

R k a a k k Z a
. (7)

To realize a BP NGD function, the following con-
dition must be satisfied:

 Z Z R k a a k k a> = − − + −

min () / ()2 1 10

2 2 2 2 2 2 . (8)

In addition, the reflection and transmission coeffi-
cients are expressed as

S
k Z a

R k a a k k Z a
T
11 0

2 2

0
2 2 2 2 2 2

1

2 1 1
()

()

() ()
ω =

−

− − + + −

 (9)

S
R a k

R k a a k k Z a
T
21 0

0
2 2

0
2 2 2 2 2 2

2 1 1

2 1 1
()

()()

() ()
.ω =

+ −

− − + + −

 (10)

These S-parameters are susceptible to satisfy the
constraints ST

11 0
10 2010() /

ω <
− dB and ST

21 0 0()ω ≠ .
To more realistically verify the efficiency of the

developed BP NGD theory, the proof-of-concept
(POC) will be investigated in the following section.

Design description of BP NGD T-circuit
prototype

By using the previous relations, the theoretical
model of the T-structure can be compared with
simulation and measurement. Doing this, as POCs,
passive and active BP NGD circuits were designed,
simulated, fabricated, and tested to verify the valid-
ity of the theory established in the following sec-
tion. The design process of the BP NGD CL-based
T-circuit was similar to the classical electronic cir-
cuits (filters, phase shifters, couplers, power divid-
ers, and so on). All simulation results in this article
are obtained from simulations with the microwave
electronic circuit designer and simulator advanced
design system (ADS) from Keysight Technologies.
The measurements were performed with a vector
network analyzer (VNA). Figure 2a and b intro-
duces the ADS design layout and photograph of the
T-microstrip circuit.

This passive circuit was implemented in fully distrib-
uted microstrip technology without using lossy lumped
circuits. The fabricated prototype that is displayed in
Figure 2 has a physical size of 40 mm × 80 mm. The
prototype was realized on the FR4 substrate with the
characteristics in Table 1. Before the fabrication, the
TL and CL were slightly optimized to reach better NGD
performances. It should be emphasized that the effect
of TL connecting the access ports is negligible because
of the well-matching effect, and its GD is notably small
compared to the targeted NGD value as indicated in
Table 1. The TL and CL physical widths w correspond
to characteristic impedance Z = 48 Ω. The TL and CL
quarter wavelength (θ = 90°) is set at the NGD center
frequency f0 = 1.35 GHz. The considered CLs have iden-
tical coupling coefficients k = −15 dB.

Figure 2. Fabricated NGD passive circuit prototype
(a) layout and (b) photograph.

121March/April 2023

Passive T-prototype modeled, simulated, and
experimental results

To experimentally validate the NGD function with
the investigated T-topology, the prototype in Figure 2
was tested. Then, the results from the MATLAB pro-
gram, ADS simulations, and measurements will be
compared and discussed. The NGD prototype was
measured using a VNA provided by Rohde & Schwarz
(ZNB 20, frequency band from 100 kHz to 20 GHz).
The comparative results are obtained from 1.2 to 1.4
GHz as depicted in Figure 3. As expected, this result
proves the validity of the BP NGD function gener-
ated by the T-topology introduced in Figure 1. The
NGD prototype has a bandwidth of approximately
24 MHz. As plotted in Figure 3a, the NGD optimal
value is approximately −14.3 ns in simulation versus
−13 ns in measurement. The NGD center frequency
is approximately 1.36 GHz. Table 2 summarizes the
comparison of NGD performances from the model,
simulation, and measurement. Slight differences in
GD calculated from (7), simulations, and experimen-
tal results, notably at approximately the NGD center
frequency, are observed. They are notably due to the
dielectric substrate permittivity tolerance, the sub-
strate dispersion loss, the metallization skin effect,
and the fabricated circuit imperfection in the con-
sidered working frequency. The relative permittivity
and loss tangent of PCB may vary with frequency,
temperature, and other factors. Therefore, there is a
slight difference between the simulated and meas-
ured frequencies. Moreover, Figure 3b introduces
that the designed NGD prototype ensures −9 dB
transmission coefficients in simulation and measure-
ment at approximately the center frequency.

Additionally, as depicted in Figure 3c, the reflec-
tion coefficient is better than −17.7 dB within the
NGD bandwidth.

BP NGD experimental analysis of
active topology

To compensate for the insertion loss of the pas-
sive NGD circuit introduced in Figure 1, we have
fabricated another active circuit prototype using a
microwave amplifier which is shown in Figure 4. In
this case, the POCs are constituted by a passive T-cir-
cuit and a packaged LNA. The employed amplifier
is a surface-mounted monolithic LNA referenced
LEE-9+ from mini-circuits whose gain is 8.5 dB.
The experimental validation of the BP NGD active
circuit was also performed based on S-parameter

measurements. The VNA from Rohde & Schwarz is
defined by the specification ZNB 20 frequency band
from 100 kHz to 20 GHz. During the test, the active
circuit was biased with a V0 = 5 VDC power supply.

Discussion on NGD results of the active circuit test
The simulation and measurement results are

compared in Figure 5. The simulation result was per-
formed from S-parameters in the ADS environment.
During the simulation, the touchstone file of LEE-9+
provided by the manufacturer [12] was considered.
The measured frequency responses are very well cor-
related with the simulations. Furthermore, the results
confirm the BP NGD function without loss expected
with the T-topology and a microwave amplifier. The
amplifier does not affect the GD responses.

As shown in Figure 5a and b, NGD performances
from measurement and simulations present an excel-
lent consistency in terms of simulated NGD center
frequency, value, and bandwidth. The relative inac-
curacies of the reflection coefficient between meas-
urements and simulations are 5% better than the
expected values.

Table 1.NGD T-circuit parameters and specifications.

122 IEEE Design&Test

General Interest

Active NGD circuit specifications
In addition to the NGD analyses, the power added

efficiency (PAE) and intercept products were also
characterized. As discussed in the following para-
graphs, the developed NGD circuit presents an inter-
esting active performance.

a) PAE characterization of the active NGD circuit
The following parameters are considered to per-

form the NGD circuit PAE analysis. We denote

• the power consumption, PDC(NGD);

• the root mean square (RMS) input power,
Pin(NGD); and

• the RMS output power, Pout(NGD).

The characterization was based on the NGD circuit
output with a 1 dB compression point denoted Pout-1 dB.
The NGD circuit PAE was assessed from the relation

 PAE NGD
NGD NGD

NGD
out in

DC

()
() ()

()
.=

−P P

P
 (11)

During the test, the bias voltages are set to
VGG = 9 V. Figure 6 shows the results of the P1 dB
and PAE characterization of the active NGD circuit.
Figure 6a shows the output 1 dB compression point,
and Pout-1 dB = 15.4 dBm is measured at 1.36 GHz.
The variation is widely less than 0.5 dB from 1.2 to
1.5 GHz. This 1-dB compression depends mainly on
the used LNA. When the power consumption of the
active NGD circuit is equal to 450 mW, as shown
in Figure 6b, the NGD circuit PAE is approximately
7.5%. This PAE is almost insensitive to the frequency

Figure 3. (a) GD, (b) transmission, and (c) reflection
coefficients of the fabricated T-circuit, as shown in Figure 2.

 Table 2. Calculated, simulated, and experimented NGD
performances.

123March/April 2023

from 1.2 to 1.5 GHz. This NGD circuit PAE can be
improved by using less power-consuming NGD pas-
sive topology.

b) Input/output intercept products characteriza-
tion of the active NGD circuit

The nonlinearity characterization of the NGD cir-
cuit is based on the assessment of the output and
input third-order intercept products (OIP3 and IIP3).
Two different sine signals

v t V f t

v t V f t
1 1 1

2 2 2

2

2

() sin()

() sin()
max

max

=

=

π

π

 (12)

with frequencies f1 and f2 were injected to realize this
nonlinearity analysis. The two-input signal ampli-
tudes were maintained

 V1max= V2max= Vmax. (13)

We denoted the amplitude of input signal funda-
mentals as P1, and the output one P2 corresponds to
the frequency

 f f fout = −2 1 2. (14)

The output third-order intercept was calculated by

 OIP NGD3
2

1 2
1() .=

−
+

P P
P (15)

By denoting the NGD circuit gain by G, we extract
the input third-order intercept from the equation

 IIP NGD OIP NGD3 3() ()= −G. (16)

The measurement test setup is shown in Figure 7a.
The following equipment was used during the test.

• Two signal generators with reference: 1) Agilent
MXG Analog Signal Generator N5183A operat-
ing in the bandwidth of 100 kHz–40 GHz and 2)
Agilent N9310A RF Signal Generator with the fre-
quency band of 9 kHz–3 GHz to synthesize two-
tone harmonic signals with center frequencies: f1 =
f0 and f2 = f0 + 1 MHz with f0 = 1.35 GHz.

• The two-tone signals were combined using a power
combiner, referenced, ZFRSC-42-S+, which oper-
ates from DC-4200 MHz provided by a mini-circuit.

• The signal spectra are visualized with the spectrum
analyzer reference, Agilent MXE EMI Receiver
N9038A, which operates from 20 Hz–26.5 GHz.

The measured OIP3 and IIP3 are displayed in Fig-
ure 7b. We can emphasize that OIP3 is 29 dBm, and
IIP3 is 21 dBm.

Discussion on the performance of an active
prototype NGD compared with the literature

Table 3 summarizes the comparison of NGD
performance parameters: f0, GDn, BW, and S21(f0).
Table 3 shows the performance results of the pro-
posed NGD active circuit compared to others in
the literature [9], [10], [11], [13], [14], [15]. Subse-
quently, the introduced T-structure and LNA-based
NGD topology have the main advantages in terms of:

• possibility to operate with a large NGD value;
• low signal attenuation;

Figure 4. Photograph of the fabricated active NGD
circuit.

Figure 5. (a) GD, (b) transmission, and (c) reflection
coefficients of the fabricated NGD circuit in Figure 4.

124 IEEE Design&Test

General Interest

Figure 7. OIP3 and IIP3 characterization. (a) Experimental setup. (b) Measured results.

Table 3. NGD performance comparison.

Figure 6. Experimental (a) 1 dB power compression point and (b) PAE for the active
NGD circuit.

125March/April 2023

 [2] M. Kitano, T. Nakanishi, and K. Sugiyama, “Negative

group-delay and superluminal propagation: An

electronic circuit approach,” IEEE J. Sel. Top. Quantum

Electron., vol. 9, no. 1, pp. 43–51, Feb. 2003.

 [3] B. Ravelo, “Similitude between the NGD function and

filter gain behaviours,” Int. J. Circuit Theory Appl., vol.

42, no. 10, pp. 1016–1032, Oct. 2014.

 [4] O. F. Siddiqui, M. Mojahedi, and G. V. Eleftheriades,

“Periodically loaded transmission line with effective

negative refractive index and negative group velocity,”

IEEE Trans. Antennas Propag., vol. 51, no. 10,

pp. 2619–2625, Oct. 2003.

 [5] J. J. Barroso et al., “Negative group velocity in resistive

lossy left-handed transmission lines,” IET Microw.,

Antennas Propag., vol. 11, no. 15, pp. 2235–2240,

Oct. 2017.

 [6] M. Kandic and G. E. Bridges, “Bilateral gain-compensated

negative group delay circuit,” IEEE Microw. Compon. Lett.,

vol. 21, no. 6, pp. 308–310, Jun. 2011.

 [7] Y. Meng et al., “A broadband switch-less bi-directional

amplifier with negative-group-delay matching circuits,”

Electronics, vol. 7, no. 9, pp. 1–11, Aug. 2018.

 [8] T. Zhang, R. Xu, and C.-T. M. Wu, “Unconditionally stable

non-foster element using active transversal-filter-based

negative group delay circuit,” IEEE Microw. Wireless

Compon. Lett., vol. 27, no. 10, pp. 921–923, Oct. 2017.

 [9] C.-T. M. Wu and T. Itoh, “Maximally flat negative group-

delay circuit: A microwave transversal filter approach,”

IEEE Trans. Microw. Theory Techn., vol. 62, no. 6,

pp. 1330–1342, Jun. 2014.

 [10] M. Kandic and G. E. Bridges, “Asymptotic limits of

negative group delay in active resonator-based

distributed circuits,” IEEE Trans. Circuits Syst. I, Reg.

Papers, vol. 58, no. 8, pp. 1727–1735, Aug. 2011.

 [11] F. Wan et al., “The design method of the active

negative group delay circuits based on a microwave

amplifier and an RL-series network,” IEEE Access,

vol. 6, pp. 33849–33858, 2018.

 [12] Mini-Circuits Monolithic Amplifier LEE-9+.

Accessed: May 10, 2020. [Online]. Available: https://

www.minicircuits.com/WebStore/dashboard.

html?model=LEE-9%2B

 [13] Z. Zhu et al., “A novel balanced-to-unbalanced negative

group delay power divider with good common-mode

suppression,” Int. J. RF Microw. Comput.-Aided Eng.,

vol. 32, no. 7, 2022, Art. no. e23173.

 [14] Z. Wang et al., “A negative group delay microwave

circuit based on signal interference techniques,” IEEE

Microw. Wireless Compon. Lett., vol. 28, no. 4,

pp. 290–292, Apr. 2018.

• design simplicity; and
• good return loss.

The main novelty of the present research work,
in difference from the NGD design proposed in
[11], concerns the nonlinear (NL) and noise fig-
ure (NF) characterization of a microwave active
circuit implemented with a fully distributed
microstrip passive NGD circuit part. Compared
with other passive NGD circuits [13], [14], [15],
the passive structure proposed in this work has the
advantage of larger NGD value, good return loss,
and design simplicity. Correspondingly, the band-
width of T-topology is relatively smaller than that
of other passive structures.

The proposed circuit is promising to be useful
but for many wireless communication channels as
in standard IEEE 802.11b, satellite communication
channels are limited to 20 MHz, and the proposed
circuit bandwidth is good enough.

a BP ngD theory of active microwave circuits
including a passive T-topology is developed. The
passive T-topology is composed of fully passive
distributed elements with a TL and two identical
CLs. The S-matrix models of both passive and
active topologies are established. More impor-
tantly, the calculated, simulated, and measured
results were compared. As POC, the tests and val-
idations were performed with an NGD circuit pro-
totype designed and implemented in microstrip
technology. Excellent consistency was observed
between simulations and measurements, which
confirm the BP NGD behavior. The tested proto-
type has excellent performance compared with
those in the literature. The measured GD value of
−13 ns and a transmission coefficient better than
0 dB were achieved at the center frequency of
approximately 1.36 GHz.

Acknowledgments
This work was supported in part by NSFC under

Grant 61971230, in part by the Jiangsu Distinguished Pro-
fessor Program and Six Major Talents Summit of Jiangsu
Province under Grant 2019-DZXX-022, and in part by the
Startup Foundation for Introducing Talent of NUIST.

 References
 [1] M. W. Mitchell and R. Y. Chiao, “Causality and negative

group delays in a simple bandpass amplifier,” Amer. J.

Phys., vol. 66, no. 14, pp. 14–19, 1998.

https://www.minicircuits.com/WebStore/dashboard.html?model=LEE-9%2B
https://www.minicircuits.com/WebStore/dashboard.html?model=LEE-9%2B
https://www.minicircuits.com/WebStore/dashboard.html?model=LEE-9%2B

126 IEEE Design&Test

General Interest

 [15] R. Vauché et al., “Experimental time-domain study for

bandpass negative group delay analysis with lill-shape

microstrip circuit,” IEEE Access, vol. 9,

pp. 24155–24167, 2021.

Taochen Gu is pursuing a PhD with the Nan-
jing University of Information Science and Technol-
ogy (NUIST), Nanjing 210044, China. His research
interests include abnormal wave propagation in dis-
persive media and microwave circuits. Gu received
a BSc in electrical engineering from NUIST. He is a
Student Member of IEEE.

Fayu Wan is a full professor at the Nanjing
University of Information Science and Technol-
ogy (NUIST), Nanjing 210044, China. His current
research interests include negative group delay
(NGD) circuits, electrostatic discharge, electromag-
netic compatibility, and advanced RF measurement.
Wan received a PhD in electronic engineering from
the University of Rouen, Rouen, France. He is a Sen-
ior Member of IEEE.

Jingjie Zhou is an engineer with the Nanjing
Institute of Measurement and Testing Technology,
Nanjing 210049, China.

Qizheng Ji is a professor of engineering at the
Army Engineering University of PLA, Shijiazhuang
050003, China.

Binhong Li is an associate professor at the Key
Laboratory of Silicon Device Technology, Chinese
Academy of Sciences, Beijing 100029, China.

Blaise Ravelo is a university full professor at
the Nanjing University of Information Science and
Technology (NUIST), Nanjing 210044, China. His
research interests include multiphysics and electron-
ics engineering. He is a member of IEEE.

 Direct questions and comments about this article to
Fayu Wan, School of Electronic and Information Engi-
neering, Nanjing University of Information Science &
Technology (NUIST), Nanjing 210044, China; fayu.
wan@nuist.edu.cn.

1272168-2364/22©2022 IEEECopublished by the IEEE CEDA, IEEE CASS, IEEE SSCS, and TTTC

FPGA-Chain: Enabling
Holistic Protection of
FPGA Supply Chain With
Blockchain Technology

 The global FPga market size is valued at
about $9 billion in 2020 and is projected to grow to
$18.8 billion in 2027 due to the incoming Internet-of-
Things (IoT) era [1]. Thanks to their excellent flexi-
bility and performance, FPGAs are becoming one of
the major IoT platforms to meet the evolving func-
tional, reliability, and security requirements through-
out many years of infield execution, supporting the
mission-critical infrastructure in hospitals, airports,
and military bases [2].

Despite the bright market prospect, the FPGA sup-
ply chain is gravely threatened from the trust perspec-
tive, that is, counterfeit FPGA hardware devices and
software bitstream tampering. A counterfeit FPGA

device can be a recycled
chip reclaimed from the
discarded boards, cloned
copies, an item remarked
to a higher specification
or overproduced product
from a rogue foundry [3].
The scenarios get even
worsen due to the chip
shortage induced by
the COVID-19 pandemic

which encourages the counterfeiters to flood the
supply chain with illegitimate FPGA ICs for higher
revenue. The inundation of counterfeit FPGAs would
undermine the reliability and trustworthiness of mis-
sion-critical infrastructures, leading to disastrous
results potentially. Moreover, the malleable con-
figuration bitstream (FPGA firmware encoding the
user-defined circuitry) is susceptible to tampering by
inserting malicious functionality such as information
leakage and denial-of-service [4]. Given the serious
security concerns from the counterfeit devices and
tampered bitstream threats, a transparent, fair, and
the trusted FPGA supply chain is in high demand
to ensure the authenticity of purchased FPGA chips
and associated firmware.

Although numerous techniques have been pro-
posed against counterfeit devices and bitstream tam-
pering in the past decade, a silver bullet solution is

Digital Object Identifier 10.1109/MDAT.2022.3213998

Date of publication: 12 October 2022; date of current version:

10 March 2023.

Tao Zhang, Fahim Rahman, Mark Tehranipoor,
and Farimah Farahmandi
Department of Electrical and Computer Engineering
University of Florida
Gainesville, FL 32611 USA

Editor’s notes:
Field-programmable gate array (FPGA) bitstream reverse engineering
and counterfeiting is a pertinent challenge in the modern hardware supply
chain. To this end, this article proposes a blockchain-based technology
to foster authenticity and integrity of the FPGA supply chain for trustworthy
traceability. The proposed approach is transformative in being able to
detect counterfeit FPGA chips and bitstreams using state-of-the-art
blockchain technologies.

—Kanad Basu, The University of Texas at Dallas

March/April 2023

128 IEEE Design&Test

General Interest

still unavailable, unfortunately [5]. For example, to
identify recycled and remarked FPGAs, people estab-
lish complicated standards and electrical tests which
are costly and less effective against counterfeit ICs
without observable defects or degradation [3]. Hard-
ware devices and FPGA bitstreams can be protected
by logic locking [6] by adding extra key gates in the
original netlist to be only unlocked with a correct
key. However, SAT attacks [6] as well as advanced
optical physical attacks [7] fundamentally challenge
the scheme. The conventional original component
manufacturer (OCM) query-based system verifies
the devices by checking the chip ID from users [8].
If the corresponding static record can be found in
the database, the item is recognized as an authentic
device. However, the scheme does not provide any
traceability or inform the ownership status of the tar-
get chip so that an intelligent adversary can easily
inject counterfeit devices with legitimate IDs (e.g.,
recycled devices) to deceive the query mechanism.
Considering these limitations, it is imperative to
establish a framework to provide holistic protection
by fulfilling the following requirements.

• Traceability empowerment. Lacking traceability
presents formidable challenges to protecting the
FPGA supply chain. Empowering traceability
could tackle the root causes of illegitimate devices
and bitstreams instead of endlessly proposing var-
ious offline techniques with limited scopes.

• Fair data management. The authentic information
of FPGA devices and bitstreams should be stored
in a secure database to serve as the foundation of
traceability. The information should be managed
fairly; single entities cannot stealthily manipulate or
delete the records from the database.

• Effective authentication protocols. To enable
trustworthy traceability in the convoluted supply
chain, authentication protocols must be available
to ensure 1) every hardware FPGA instance can
be uniquely identified and authenticated and 2)
the software bitstream integrity can be verified.

These requirements inspire us to propose our
novel blockchain-based framework, FPGA chain,
protecting the FPGA supply chain against the intru-
sions of problematic devices and bitstreams. Block-
chain, as a decentralized ledger system, can increase
transparency and reduce cost and risks across the
supply chain [5], thus becoming our infrastructure

choice for FPGA supply chain management. We
summarize our contributions below.

• We propose the FPGA-chain framework that can
enroll the information of FPGA devices and bit-
streams and trace and track devices throughout
the diverse supply chain, providing the prove-
nance at any arbitrary stage according to the
ownership history, helping identify counterfeit
devices.

• We store the data records in the synchronized
ledger distributed on multiple peer nodes and
manage them with customized smart contracts.
Any operations on the ledger need a consen-
sus across organizations, enabling fair data
management.

• We propose an authentication protocol covering
both device authenticity and bitstream integrity
verification utilizing the partial run-time reconfig-
uration capability available in modern FPGAs [9]
to prevent illegitimate components from entering
the user domain.

Background

FPGA supply chain and threat model
Figure 1a presents the FPGA supply chain and

our threat model. A typical FPGA supply chain path
starts with the presilicon design from the OCMs, that
is, FPGA vendors like AMD-Xilinx and Intel. Their
engineers hand the layout design to the (offshore)
foundries for device fabrication and packaging.
The product chips then enter the chip distribution
network from where PCB assemblers can purchase
these items. The FPGA boards mounted with periph-
eral modules such as power management units and
external memories can be later distributed by PCB
distributors. System developers purchase the board
and program the target FPGA by installing the config-
uration bitstream. Such FPGA-based systems are dis-
tributed by system distributors and finally reach the
end-users for various applications. As FPGAs would
be integrated into mission-critical systems such as
military infrastructure or medical equipment, end-us-
ers always want authentic devices and compliant bit-
streams to protect the final systems from reliability
and/or security issues. OCMs also need a genuine
supply chain to protect their revenue and reputa-
tions while the system developers expect their asset

129March/April 2023

bitstreams should not be tampered with and con-
form to the original specification. Therefore, in our
threat model (see also Figure 1a), except for OCMs
and end-users, other participants can be untrusted.
The system developers are partially trusted since
they might introduce counterfeit devices but have
no motivation to compromise their own bitstreams.
We articulate the targeted threats below.

• Recycled devices: Untrusted IC/PCB/system dis-
tributors, PCB assemblers, and system develop-
ers might intentionally introduce recycled FPGAs
(e.g., reclaimed from discarded boards) as new
ones for cost savings or higher profits.

• Overproduced devices: Rogue foundries have the
access to the layout design and can fabricate
more items than ordered. These illegitimate cop-
ies can be sold to untrusted entities in the supply
chain through the gray market.

• Remarked devices: The marking information on
the chip surface indicates the part name, speed
grade, lot number, and so on. An untrusted entity
can remark an FPGA to a higher grade to extend
the profit margin.

• Cloned devices: A cloned device is a replica of
the authentic device through hardware reverse
engineering and refabrication. The untrusted
entities could inject these illegitimate devices
stealthily, whereas cloned items potentially have
serious quality and reliability issues.

• Tampered bitstreams: The configuration bit-
streams determine the FPGA in-field behaviors.
They can be manipulated by the untrusted sys-
tem distributors for inserting malicious function-
ality, compromising the confidentiality, integrity,
and availability of the final systems.

Given the above-mentioned threats, we propose
our blockchain-centric framework, FPGA chain, to
address them by empowering device traceability
and authenticity verification in the supply chain.

Existing supply chain protection schemes
Counterfeit detection techniques involve sophis-

ticated (even destructive) inspections such as
electronic tests, optical, and T-Hz imaging, which
are typically expensive and expertise-intensive [3].
Counterfeit avoidance primitives are a set of low-
cost primitives that can help measure chip status
and/or fingerprint silicon [3]. Among them, physical

unclonable function (PUF) primitives can trans-
late the silicon process variations to chip-unique
signature, that is, challenge-response pairs (CRPs),
as shown in Figure 1b. The CRPs are profiled and

Figure 1. (a) FPGA supply chain and our
threat model, (b) PUF application for
counterfeit device detection, (c) consortium
blockchain-based FPGA-chain framework,
and (d) example entry for an FPGA object in
the distributed blockchain ledger.

130 IEEE Design&Test

General Interest

stored by OCMs in a secure database during the PUF
enrolment phase and can be invoked for detect-
ing counterfeit devices by checking the difference
from the response of the same challenge at an arbi-
trary stage of the supply chain. Note that the used
CRPs will expire and need to be deleted from the
database. PUF primitives are, albeit effective, not
available in most commercial FPGAs. As for FPGA
bitstream protection, encryption and authentication
are the most prevalent scheme where the adversary
is supposed to access the ciphertext data only. How-
ever, some recent research has demonstrated how
to exploit the vulnerabilities in several FPGA families
to decrypt, manipulate, and re-encrypt the cipher-
text bitstreams without knowing the symmetric key
[9]. Some OCMs offer the static ID-based verification
mechanism which searches for the user-provided
ID in their centralized database for authenticity
validation. However, a counterfeit device such as
a recycled or cloned chip can have a legitimate ID
and bypass this test. Besides, this mechanism suffers
from single-point failure and insider data manipula-
tion risks where an administrator can arbitrarily add/
change/delete data records stealthily. In contrast,
blockchain emerged as a decentralized and trans-
parent infrastructure, becoming a perfect candidate
for enabling trustworthy traceability throughout the
supply chain.

Blockchain for electronic supply chain
Blockchain emerges as the promising platform

for the supply chain scheduling by storing and man-
aging the data in a decentralized ledger. Unlike the
traditional centralized database which is managed
by a central administrative authority, blockchain
relies on a certificate authority (CA) network which
is a group of verified peer nodes that jointly approve
new operations based on the underlying voting con-
sensus mechanism. The peer-to-peer topology of
blockchain allows the ledger to be stored synchro-
nously on millions of servers. Blockchain infrastruc-
ture can be classified into three categories: 1) public;
2) private; and 3) consortium. Public blockchain
allows anyone to view and participate in the infra-
structure (e.g., Bitcoin) while private blockchain is
confined to those nodes which are permissioned by
the administrative entity, which works well inside
a single organization with multiple departments.
Considering the FPGA supply chain involves numer-
ous different companies/entities, the consortium

style is a good fit since it is a permissioned platform
governed by multiple organizations, combining
the merits of both private (efficiency) and public
(decentralization) variants.

Although blockchain has been used for schedul-
ing the general microelectronic supply chain in [5],
[8], and [10], the FPGA supply chain is confronted
with additional vulnerabilities from the software bit-
stream perspective. Besides, [5] and [10] assume
there are available hardware PUF instances on the
target silicon for authentication, which is not the
case for most commercial FPGAs. Therefore, our
FPGA-chain framework is tailored to suit the fact
much better by using soft PUFs and run-time configu-
ration data verification which will be detailed in the
upcoming section.

FPGA-chain framework

Overview
The overview of our proposed FPGA-chain frame-

work is depicted in Figure 1c. There are manage-
ment components of the platform.

• Consortium configuration manager: It defines the
policies of the FPGA-chain platform. For exam-
ple, an asset object can only be created by OCMs
and updated upon consensus.

• CA: It cryptographically ensures the confidential-
ity and integrity of each transaction and opera-
tion for peer nodes.

• Membership service provider: It assigns and man-
ages the identities of involved members.

• Transaction manager: It interacts with the smart
contracts for receiving requests, schedules
the consensus voting among peer nodes, and
post-transactions to all synchronized ledgers.
Note that, instead of using the computation-
ally intensive proof-of-work (PoW) protocol,
we update the ledger through the peer-level
verification of transaction correctness that can
be implemented using the practical byzantine
fault-tolerate (PBFT) algorithm and digital signa-
tures for better efficiency and throughput.

These management components control and
manage the peer nodes which are deployed on the
hosts of OCMs, PCB assemblers, system developers,
and IC/PCB/system distributors. Each node will have
a copy of the synchronized ledger containing iden-
tical records. Also, there are smart contracts that are

131March/April 2023

service programs to be invoked by users through
distributed applications (DApps) on their terminals.
The available smart contracts are the following.

• Check_ID: Only OCMs can invoke the contract to
verify whether the incoming chip ID is presented
in the processing wish list.

• Create_Asset: Only OCMs can invoke the contract
to create a new data object for the target FPGA
(asset) in the distributed ledger (see Figure 1d for
an example entry).

• Update_Asset: This contract is executed to update
the information such as properties or ownership
status of an asset based on the consensus of peer
nodes.

• Verify_Asset: This contract can be invoked by
anyone in the supply chain to trace and track the
provenance of the target FPGA to avoid counter-
feit scenarios.

• Authenticate_Asset: Only end-users can invoke
the contract to receive a partial bitstream through
DApp that can be loaded on their FPGAs and
return the outcome packet to the FPGA chain for
authenticating the hardware device and/or soft-
ware bitstream.

Device enrolment
After device fabrication, the FPGA ICs should be

sent to a trusted (in-house) facility for device enrol-
ment to avoid potential errors and security risks
(see Figure 2a). The facility will send the IC enrol-
ment request through DApp that is later approved
by the OCM. Next, a unique electronic chip ID
(ECID) should be sent to the OCM as the identifier.
ECID, as a common scheme for IC identification, is
programed into each die during the wafer test. For
example, every Xilinx FPGA is assigned with a 57-bit
read-only Device_DNA that is accessible through
either the JTAG interface or the internal DNA_Port
primitive.1 OCM will execute the contract Check_ID
to see whether this ECID belongs to one of the chips
to be enrolled. If yes, an FPGA bitstream encoding
a PUF implementation will be transferred to the
facility that can be downloaded to the target device
for collecting CRPs. As detailed in the previous
section, PUF is used to fingerprint every silicon by
utilizing the process variations. However, given the
unavailability of hardware PUFs in most modern
1We will mostly use Xilinx terminology (such as Device_DNA) for simplicity but
the components like embedded ECID and partial reconfiguration capabilities are
universal across mainstream vendors.

FPGAs, we propose that OCMs could develop an
FPGA soft PUF at RTL or gate-level [11] to imple-
ment the primitive on the configurable fabric with
good metrics like uniqueness, stability, uniformity,
and area overhead, as an alternative. The facility
can use the soft PUF to generate the CRPs and send
them back along with the part marking and ECID to
OCMs. With the information, OCMs can execute the
Create_Asset to initiate the ledger entry for a new
FPGA object as illustrated in Figure 1d. The blue
fields will be filled with ECID, part marking, and
PUF CRPs, while the ownership history includes
the current owner (OCM) and the exact timestamp.
Note that the PUF CRPs serve as the root-of-trust for
the device authentication, so the data privacy pol-
icy will keep them private, that is, only visible to
the trusted OCMs, whereas ECID and part marking
can be public for identification. These privacy poli-
cies enforce necessary access control to constitute
fair data management in the FPGA chain, effec-
tively avoiding sensitive information leakage to
untrusted entities.

Transactions between supply chain entities
Despite the convoluted FPGA supply chain, most

of the transactions can be considered in a similar
model from the FPGA-chain side, that is, the buyers
join the FPGA chain, get the IDs from the member
service provider, and place orders through the DApp.
The transaction manager component will schedule
these orders and distribute them to the correspond-
ing sellers. After receiving the items, the buyer will
verify the devices based on the ECIDs. Successful
verification will motivate the buyers to confirm the
items and the ownership status of the item needs to
be updated. This flow is fully compatible with the
present trading routine, while the sensitive business
statistics such as batch number and price can be
visible to permissioned entities under proper access
control policies. Here, we highlight a typical case
that a system developer wants to purchase an FPGA
board from a PCB assembler as shown in Figure 2b.
The FPGA device on the board is acquired from an
IC distributor and enrolled by the OCM. The system
developer sends the board purchase request via
DApp and receives the boards shipped from the PCB
assembler. The ECIDs can be read from the received
FPGAs as the input to the smart contract Verify_Asset
that will check whether the current owner of the ECID
is consistent with the identity of the PCB assembler,

132 IEEE Design&Test

General Interest

and then verify the previous owners according to
the history iteratively until the OCM. In this way, the
system developer can track the journey of the FPGA
devices throughout the supply chain with the FPGA
chain. If the verification passed, that is, successfully
identifying the OCM, all involved entities can reach
the consensus to update the current owner from the
PCB assembler to the system developer (ownership
history column in Figure 1d). Otherwise, the transac-
tion will be rejected and items would be returned.

Bitstream registration
System developers compile their hardware

designs to generate configuration bitstreams, making
the FPGAs become functional systems. As bitstream
encodes the functionality of FPGA implementations,
it is critical to protect them from malicious manip-
ulations to avoid aftermaths like denial-of-service
and information leakage [2]. The bitstream registra-
tion (see Figure 2c) procedure records the plaintext
bitstream on the FPGA chain that can be used as a
reference for future verification. The system devel-
oper will send the registration request to the trusted
OCM first. After the request approval, OCM will run
the CheckJD contract to see whether the ECID from
the system developer exists in the ledger or not.

If yes, OCM will execute Update_Asset to bind the
bitstream with the asset (FPGA) object, that is, the
purple field in Figure 1d will be linked to the config-
uration data. Note that the plaintext bitstream is also
stored in a private way to avoid being reverse engi-
neered by untrusted entities [2]. One may claim that
system developers can upload their bitstreams to a
conventional OCM-centralized database waiving the
needs of a blockchain infrastructure, which might
be more manageable but violate the data privacy
policies since OCMs are considered to be trusted
only for their hardware devices instead of the soft
intellectual property (IP) encoded in the plaintext
bitstream belonging to system developers.

Entering the user domain
When entering the user domain, FPGAs can be

sold either without bitstream (bare chips and FPGA
boards) or with bitstream (FPGA-based systems).
End-users always care about the device’s authentic-
ity and bitstream integrity, whereas they are assumed
to be unqualified to perform sophisticated inspec-
tions. They can rely on the FPGA-chain platform
for authentication instead as presented in Figure 2d
where an end-user purchases an FPGA-based system
from a system distributor. The FPGA device might be

Figure 2. (a) Device enrolment. (b) Transactions between supply chain entities. (c) Bitstream
registration. (d) Entering the user domain. (e) Authentication bitstream diagram.

133March/April 2023

counterfeit while the alongside bitstream could be
tampered with by a system distributor. The first steps
are identical to the transactions between supply
chain entities but a successful ECID-based verifica-
tion does not necessarily indicate an authentic part
and a compliant bitstream. Therefore, the end-user
will send the authentication request via DApp and
receive a partial bitstream to be downloaded in the
FPGA. The partial bitstream will package the essen-
tial in-field information as a response packet to be
sent back to the FPGA chain for verification.

As illustrated in Figure 2e, the authentication
partial bitstream hardcodes a ciphertext ENCKa (Kh)
and a finite-state machine (FSM)-obfuscated key Kb
[12], where Ka and Kb are a pair of asymmetric keys
while Kh is the HMAC key. On the FPGA side, the par-
tial reconfiguration engine in the static region will
load the partial bitstream on the Dynamic Region
through the internal configuration access port (ICAP)
interface which can access and/or write the FPGA
on-chip configuration memory at run-time. Then, the
authentication bitstream will access the read from the
DNA_Port, collect PUF responses (Ri), and retrieve
the configuration frames of the functional region
through the ICAP FSM. Kb is unrolled and decrypts Kh
from ENCKa (Kh) in parallel. The final response packet
will cover the ECID, PUF response, hMaCKh (config-
uration data of the functional region), and HMAC
over the three segments using Kh as well as the part
marking (end-user input). The response packet will
be checked against the reference information by the
FPGA chain by following the protocol Authenticate_
Asset. This protocol can enable secure authentication
even considering the man-in-the-middle attack since
Kh can only be decrypted by the obfuscated Kb, that is,
only time-consuming full bitstream reverse engineer-
ing can extract it (state-of-the-art techniques require
>10 minutes [2]). An authentication session is only
valid within the time threshold (e.g., 3 minutes) and
rejects late packets to ensure security. If Authenticate_
Asset passed, the involved entities would achieve the
consensus transferring the ownership from the system
distributor to the end-user. Note that, for those without
bitstream scenarios (e.g., bare chip or FPGA develop-
ment boards), the authentication procedure is similar
but without the need for checking the bitstream integ-
rity (e.g., ICAP FSM is not required in the authentica-
tion bitstream in Figure 2e).

With the existing identification and intrinsic
information, the FPGA chain can model the FPGA

devices and bitstreams in the blockchain infrastruc-
ture to trust-worthily track and authenticate them
thwarting targeted supply chain attacks in the previ-
ous subsection, whereas conventional solutions like
ECID query and PUF cannot achieve the identical
effectiveness individually as discussed in the previ-
ous section.

Evaluation and discussions

Security evaluation
As discussed in the previous section, there are

five attack scenarios to be addressed by the FPGA
chain. We illustrate the example scenarios against
the attacks using the FPGA chain in Figure 3 and
elaborate on them below.

• Recycled devices: Malicious distributors can
import recycled devices from electronic recy-
clers (e.g., from offshore) and sell them as new
ones to downstream entities such as PCB assem-
blers for more profits. Using recycled devices
will undermine the reliability and security of the
system significantly. The PCB assemblers as buy-
ers (see Figure 3a) can resort to the FPGA-chain
infrastructure to verify the device authenticity
of such recycled chips by checking the current
owner/stage of the device ECID; the FPGA chain
might report Verify_Assets failure because the
device already arrives at a very end phase (e.g.,
customers or recyclers) according to the ledger
records while it has come back to life again (e.g.,
IC distribution).

• Overproduced devices: As illustrated in Figure
3b, a rogue foundry can fabricate more FPGA
devices beyond the contract and rely on mali-
cious distributors to sell them as legitimate parts.
There are two possible circumstances, that is, an
overproduced FPGA with an illegitimate or legit-
imate ECID. The former is easy to be detected by
the FPGA chain since the device ECID is never
enrolled and cannot be found in the ledger. The
latter case can be detected according to the own-
ership history and database since the current
owner of its legitimate counterpart can be some-
one else instead of the seller (e.g., malicious dis-
tributor) in this transaction.

• Remarked devices: Figure 3c depicts an example
case of remarked devices where the malicious
distributors modify the top marking of an FPGA

134 IEEE Design&Test

General Interest

to a higher grade for a 10× or even 100× more
profit space. With the FPGA chain, the marking
information is also bonded with the ECID (asset
object) in the ledger. Once an inconsistency
between the marking from buyers and the ref-
erence marking belonging to the same FPGA is
found, a remarked device is detected.

 ° Cloned devices: A system developer, albeit
being trusted in terms of FPGA bitstream,
might intend to create cloned devices for a
reduced cost. Cloned devices are replicas of
authentic ones and thus have the same ECIDs
(see Figure 3d). Detecting a cloned device is
similar to dealing with the overproduced chip
with a legitimate ID. One additional case is
when the cloned device flows faster than its
authentic counterpart (e.g., the counterfeits
enter the distribution network at first), the
ECID-based identification would wrongly con-
sider the replica as the authentic part. Never-
theless, before reaching the user domain, the
authentication procedure as articulated in
the previous section would provision a soft
PUF primitive on the target FPGA collecting
the in-field PUF responses which depend on
the device’s intrinsic process variations. In

this way, the cloned copies can be differen-
tiated if the in-field responses deviate much
from their reference counterparts stored in
the FPGA chain.

• Tampered bitstream: The configuration data
might be tampered with by malicious distrib-
utors after bitstream integration for incorpo-
rating malicious circuitry (see Figure 3e). The
FPGA chain can detect the bitstream corrup-
tions through the authentication protocol that
the FPGA configuration data of the functional
regions will be accessed during the run-time to
calculate the in-field HMAC accordingly. The
mismatch between the in-field HMAC and the
pre-computed value using the registered plain-
text bitstream from the FPGA chain indicates a
tampered bitstream. The HMAC key is random
per session and well protected through hard-
ware obfuscation and asymmetric cryptogra-
phy, so the attacker cannot replay or modify the
response packet arbitrarily.

Implementation and overhead evaluation
The FPGA chain has been implemented by the

blockchain infrastructure, as detailed in [8]. The
prototype infrastructure is Hyperledger fabric-like,

Figure 3. FPGA chain thwarts typical supply chain attacks. (a) Recycled devices detection
example. (b) Overproduced devices detection example. (c) Remarked devices detection example.
(d) Cloned devices detection example. (e) Tampered bitstream detection example.

135March/April 2023

consisting of seven peer nodes (each has an Intel
Xeon processor and 32 GB RAM) standing for organ-
izations such as OCM and IC distributors. The smart
contracts are packaged on every individual node,
while the DApp is developed with Node.js, while
the computational performance is evaluated that we
can register 1,000 devices in 20 min at a speed of
40 transactions per minute. Another important anal-
ysis is to evaluate the time and area overhead of the
authentication protocol where the partial bitstream
design (the dynamic region in Figure 2e) should be
compact and efficient. The following statistics are
reported on a mid-end FPGA platform Xilinx ZCU104.
A soft 1,024-bit RSA design was used to enable asym-
metric cryptographic operations (652 slices). The
ECID reader was essentially a shifter register con-
necting to the DNA_PORT primitive to access the
ECID (28 slices). Besides, we selected an area-effi-
cient and stable 16-bit RO PUF scheme for enrolment
and authentication purposes (213 slices). The largest
module was the soft HMAC along with the ICAP FSM
occupying 1,985 slices in total. The overall resource
utilization is around 3.21% of the entire FPGA fab-
ric. Given the variety of FPGA fabric, we evaluate the
area overhead on Xilinx VC709 and Synopsys HAPS
DX7 platforms as well which are roughly 2.74% and
2.09%, respectively, in terms of slices. As for the time
overhead covering the network transmission of the
partial bitstream and the response packet as well as
the statistics generation (e.g., HMAC calculation),
the entire procedure was around 1.13 s (the main
clock was assumed to be 100 MHz). Therefore, the
FPGA implementation for in-field authentication is
ideal for verifying the authenticity of the FPGA-based
system because of the small overhead.

The securiTy ThreaTs in the convoluted FPGA
supply chain are longstanding concerns that have
not yet been addressed holistically. We propose
our FPGA-chain framework to deploy a consortium
blockchain infrastructure featuring fair data manage-
ment, flexible smart contracts, and secure authenti-
cation protocols to provide substantial protection
to the entire FPGA supply chain against counterfeit
devices including recycling, cloning, overproduc-
tion, and remarking as well as bitstream tampering
threats. The comprehensive evaluation demon-
strates the effectiveness and acceptable overhead of
our FPGA chain. We will further enhance the FPGA
chain’s framework by introducing active IP metering
and compatibility with emerging devices.

 References
 [1] FPGA Market Report. Accessed Nov. 28, 2020.

[Online]. Available: https://www.grandviewresearch.

com/industry-analysis/fpga-market

 [2] T. Zhang et al., “A comprehensive FPGA reverse

engineering tool-chain: From bitstream to RTL code,”

IEEE Access, vol. 7, pp. 38379–38389, 2019.

 [3] U. Guin et al., “Counterfeit integrated circuits: A rising

threat in the global semiconductor supply chain,” Proc.

IEEE, vol. 102, no. 8, pp. 1207–1228, Jul. 2014.

 [4] R. S. Chakraborty et al., “Hardware Trojan insertion

by direct modification of FPGA configuration

bitstream,” IEEE Design Test, vol. 30, no. 2,

pp. 45–54, Apr. 2013.

 [5] X. Xu et al., “Electronics supply chain integrity enabled

by blockchain,” ACM Trans. Design Autom. Electron.

Syst., vol. 24, no. 3, pp. 1–25, Jun. 2019.

 [6] B. Olney and R. Karam, “Tunable FPGA bitstream

obfuscation with Boolean satisfiability attack

countermeasure,” ACM Trans. Design Autom. Electron.

Syst., vol. 25, no. 2, pp. 1–22, Mar. 2020.

 [7] M. T. Rahman et al., “The key is left under the mat: On

the inappropriate security assumption of logic locking

schemes,” in Proc. IEEE Int. Symp. Hardw. Oriented

Secur. Trust (HOST), Dec. 2020, pp. 262–272.

 [8] N. Vashistha et al., “EChain: A blockchain-enabled

ecosystem for electronic device authenticity

verification,” IEEE Trans. Consum. Electron., vol. 68,

no. 1, pp. 23–37, Feb. 2022.

 [9] M. Ender, A. Moradi, and C. Paar, “The unpatchable

silicon: A full break of the bitstream encryption of

Xilinx 7-series FPGAs,” in Proc. 29th USENIX Security

Symp., 2020, pp. 1803–1819.

 [10] M. N. Islam and S. Kundu, “Enabling IC traceability via

blockchain pegged to embedded PUF,” ACM Trans.

Design Autom. Electron. Syst., vol. 24, no. 3, pp. 1–23,

Jun. 2019.

 [11] J. Zhang et al., “A PUF-FSM binding scheme for FPGA

IP protection and pay-per-device licensing,” IEEE Trans.

Inf. Forensics Security, vol. 10, no. 6, pp. 1137–1150,

Jun. 2015.

 [12] M. Hoffmann and C. Paar, “Stealthy opaque predicates

in hardware—Obfuscating constant expressions at

negligible overhead,” 2019, arXiv:1910.00949.

Tao Zhang is pursuing a PhD at the Electrical
and Computer Engineering Department, University
of Florida, Gainesville, FL 32611 USA. His research
interests include hardware security and trust, supply
chain security, and FPGA security.

https://www.grandviewresearch.com/industry-analysis/fpga-market
https://www.grandviewresearch.com/industry-analysis/fpga-market

136 IEEE Design&Test

General Interest

Fahim Rahman is a research assistant professor
at the Electrical and Computer Engineering Depart-
ment, University of Florida, Gainesville, FL 32611
USA. His research interests include microelectronics
security and assurance.

Mark Tehranipoor is the Intel Charles E. Young
Preeminence Endowed Chair Professor in Cyberse-
curity at the Electrical and Computer Engineering
Department, University of Florida, Gainesville, FL
32611 USA. His research interests include microe-
lectronics security and trust as well as semiconduc-
tor supply chain security.

Farimah Farahmandi is an assistant professor
at the Electrical and Computer Engineering Depart-
ment, University of Florida, Gainesville, FL 32611
USA. Her research interests include hardware secu-
rity and formal verification.

 Direct questions and comments about this article
to Tao Zhang, Department of Electrical and Computer
Engineering, University of Florida, Gainesville, FL
32611 USA; tao.zhang@ufl.edu.

1372168-2364/23©2023 IEEECopublished by the IEEE CEDA, IEEE CASS, IEEE SSCS, and TTTCMarch/April 2023

The 2022 International Conference on
Computer-Aided Design (ICCAD)

Tulika Mitra
School of Computing
National University of Singapore
Singapore 119077

Digital Object Identifier 10.1109/MDAT.2023.3238340
Date of current version: 10 March 2023.

 Jointly sponsored by ACM and IEEE, the
International Conference on Computer-Aided
Design (ICCAD) is a premier forum to explore new
challenges, present leading-edge innovative solu-
tions, and identify emerging technologies in the
electronic design automation (EDA) research areas.
ICCAD covers the full range of computer-aided
design (CAD) topics—from the device and circuit
levels up through the system level, as well as post-
CMOS design.

After two years of virtual conferences due to the
global COVID-19 pandemic, we were excited to
organize the 41st edition of ICCAD as a hybrid con-
ference from 30 October to 4 November 2022, in
San Diego, CA, USA. The conference was primarily
an in-person event enabling personal interactions
and extensive networking, aspects that cannot be
replicated in virtual platforms. At the same time,
we offered virtual sessions for the speakers and the
attendees who cannot attend in person due to travel
restrictions or health issues. The virtual sessions were
held fully online in the morning followed by the
in-person sessions. Approximately 40 sessions were
held in person, while 15 sessions were virtual. Prere-
corded video presentations of all the talks, irrespec-
tive of whether they are part of a virtual or in-person
session, were available on the virtual platform for

all the attendees. The participants could discuss the
papers with the authors through the virtual platform.
The conference was immensely successful with a
record 533 registered participants including 336 ons-
ite attendees.

ICCAD has a long-standing tradition of produc-
ing cutting-edge, innovative technical programs for
attendees. Following the tradition, the members of
the executive committee, the technical program
committee, and numerous volunteers spent an enor-
mous effort to prepare an outstanding technical pro-
gram for this year as well. We are glad to announce
that we again had a significant increase in the num-
ber of regular paper submissions with a record 595
papers going through the complete peer-review
process. This strong submission record amidst a
global pandemic emphasizes the high relevance
and recognition of the conference within, but not
limited to, the CAD community. For handling such
an enormous submission number, we carefully cre-
ated 15 tracks and invited 203 outstanding technical
program committee members from both industry
and academia worldwide for these tracks. The TPC
meeting was conducted as an online event with-
out compromising the quality of the double-blind
review process. Finally, the program committee has
selected 132 papers with an acceptance rate of 22%
and yielded 43 regular sessions on diverse topics.
In addition, we had ten special sessions and two
embedded tutorials on topics that complement the
regular sessions.

Conference ReportConference Report

138 IEEE Design&Test

Conference Report

We were delighted to present three distinguished
keynote speakers: the Monday morning keynote on
Democratizing IC Design and Customized Comput-
ing was given by Prof. Jason Cong from the University
of California, Los Angeles. On Tuesday, Prof. Farinaz
Koushanfar from the University of California, San
Diego, presented the IEEE CEDA Luncheon Distin-
guished Lecture on Automated Cryptographically-Se-
cure Private Computing. Shankar Krishnamoorthy
from Synopsys presented the Wednesday keynote
on Atoms to Silicon to Systems Hyper-Convergence
to realize the next wave of semiconductor innova-
tions. Finally, Prof. Rob Rutenbar presented the ACM
SIGDA Pioneering Achievement Award speech on
Tuesday. As expected, these keynotes and speeches
were inspiring, insightful, and informative.

We had six interesting workshops on Thursday
and one on Friday covering various new and estab-
lished topics.

Some of these workshops [Workshop on Accel-
erator Computer-Aided Design (ACCAD), Workshop
on Hardware and Algorithms for Learning On-a-Chip
(HALO), Workshop on Open-Source EDA Tech-
nology (WOSET), and Top Picks in Hardware and
Embedded Security] are long-time staples of ICCAD,
while the Workshop on Zero Trust Hardware Archi-
tectures tests the waters for the first time. Two of
these workshops are colocated with ICCAD: 24th
ACM/IEEE International Workshop on System-Level
Interconnect Pathfinding (SLIP) and Sustainable
Hardware Security (SUSHI). The latter in a new inter-
active workshop that brought together around 50
invited experts from academia, industry, and govern-
ment to explore sustainable security for computing
platforms.

Last but not the least, ICCAD hosted several con-
tests and competitions. The CAD Contest is a mul-
timonth, team-based research and development
competition, focusing on advanced, real-world
problems in the field of EDA. The CADathlon is an
all-day programming competition focusing on prac-
tical problems at the forefront of CAD and EDA. The
ACM Student Research Competition (SRC) at ICCAD
provides an opportunity for undergraduate and grad-
uate students to share research results and exchange

ideas with other students, judges, and conference
attendees. This year, we also debuted the ACM/IEEE
TinyML Design Contest—a team-based, multimonth,
research and development competition, focusing
on real-world problems that require the implemen-
tation of machine-learning algorithms on low-end
microprocessors/microcontrollers. Finally, ICCAD
2022 also featured the first-ever Job Fair where stu-
dents and professionals met with representatives
from approximately ten industry and research
organizations.

ICCAD aims relentlessly at being the ultimate des-
tination for cutting-edge EDA research and emerg-
ing CAD technologies. The organization of ICCAD
is only possible with continuous support and help
from the sponsors and many volunteers: the program
chair with the program committee members, the
organizers of the workshops, contests, and job fairs,
and all members of the organization committee. We
are grateful for their commitment and dedicated
contributions as well as the attendance, interaction,
and support of the community in shaping this year’s
hybrid event into a memorable one.

the next iCCAd will take place in San Francisco,
CA, USA, between 29 October and 2 November
2023. Please follow iccad.com for more details and
updates.

Tulika Mitra is a vice-provost (academic affairs)
and a provost’s chair professor of computer science
at the National University of Singapore, Singapore
119077. Her research focuses on the hardware–soft-
ware codesign of smart, energy-efficient, and safe-
ty-critical embedded computing systems. Mitra has
a master's from the Indian Institute of Science, Ben-
galuru, India, and a PhD from Stony Brook University,
Stony Brook, NY, USA. She has served/is serving as
a member of the ACM Publications Board.

 Direct questions and comments about this article to
Tulika Mitra, School of Computing, National University
of Singapore, Singapore 119077; tulika@comp.nus.
edu.sg.

1392168-2364/23©2023 IEEECopublished by the IEEE CEDA, IEEE CASS, IEEE SSCS, and TTTCMarch/April 2023

Digital Object Identifier 10.1109/MDAT.2023.3241567

Date of current version: 10 March 2023.

g Back when I first got into the electronic test,
over 40 years ago, things were simple. You applied
a test to a chip, usually a functional test, and you
got a result. The expected value, obtained during
simulation, was a series of vectors, ones, and zeroes,
which was simple to compare with the circuit out-
put. If your simulation and test program were good,
the outputs would match except when the circuit
was faulty.

We soon moved to structural testing, where you
mostly cared about the outputs of the scan chains. A
bit trickier, but still not a big problem.

Now, based on several articles in this issue of
IEEE Design&Test, things are more complicated.
Defects do not necessarily cause a system to pro-
duce incorrect results. A structural test of AI hard-
ware is not a problem, but I am not sure how to do
a functional test.

For most of the world, testing has nothing to do
with digital circuits. Reading this issue made me
think of the more normal kind of testing. Let us con-
sider the tests we took (or gave) in college.

In a way, a multiple-choice or short-answer test
can be considered a structural test. Each question
tests for a specific item of knowledge. If a student
memorized the right set of facts, they might do very
well on these tests, even if they did not understand
the subject at all. An essay question is more of a
functional test. Properly written, it can test if a stu-
dent understands how the parts of a topic area fit
together. Now, often when we grade an essay test,
we will have a list of things we expect the student
to cover. That makes the functional essay test a bit
more like the structural short-answer test. Structural
tests are easier to grade, just like electronic testing.

Grading of multiple-choice tests like the SAT is auto-
mated, but grading of essay tests is not. Yet.

Which brings us back to AI. As I write, the news
is full of panic about students using ChatGPT to do
their homework, specifically to write essays. I asked
it to write this column, but it said “Sorry, Davidson,
I can’t do that,” so be assured that this column is
being written the old-fashioned way—on a com-
puter. But it appears that this tool does as good or
better a job as many students. I am not sure what to
think about that.

If students are using AI to write essays, it seems
only fair to allow professors to use AI to grade essays.
I wonder if ChatGPT can do that. I wonder if anyone
has tried it.

ThIs remInds me of a running gag in the excellent
movie Real Genius, which is set at a university that
resembles CalTech. A large lecture class is being
taught by a boring professor. A student brings a tape
recorder, puts it on their seat, and leaves. As the
movie progresses, more and more seats are occu-
pied by tape recorders, until the professor tapes his
lecture and we see a tape recorder lecturing in a
room filled with other tape recorders. Maybe some-
day AIs will both take and grade tests, and students
and teachers can sit outside on the lawn and learn
that way. After all, I doubt Plato gave Aristotle multi-
ple-choice tests. <

Is There an Answer?
Scott Davidson

g Direct questions and comments about this
department to Scott Davidson; davidson.scott687@
gmail.com.

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17

