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From the EIC

g The articles in this issue are divided into 
two groups: 1) the first group comprises articles 
that make up the Special Issue on Testability and 
Dependability of Artificial Intelligence Hardware 
and 2) the second group consists of general 
interest articles.

The highlight of this issue is the Special Issue 
on Testability and Dependability of Artificial Intelli-
gence Hardware. There has been plethora of recent 
investigations on designing novel hardware archi-
tectures for artificial intelligence/machine learning 
(AI/ML) applications. Though achieving high per-
formance and energy efficiency for the hardware 
architecture is of paramount importance, testability 
and dependability of these new architectures need 
to be addressed before the mainstream adoption.  
This special issue consists of seven articles from both 
academia and industry addressing the broad topic 
of testability and dependability of emerging AI hard-

ware architectures. We thank the guest editors, Fei 
Su, Chunsheng Liu, and Haralampos-G. Stratigopou-
los, for making this special issue possible.

In addition, we present three general interest 
articles, titled as follows: 1) “Using STLs for Effec-
tive In-Field Test of GPUs”; 2) “T-Topology Cou-
pler-Based Bandpass Negative Group Delay Active 
Circuit Design and Test”; and 3) “FPGA-Chain: Ena-
bling Holistic Protection of FPGA Supply Chain With 
Blockchain Technology.”

This issue also contains a report on the 2022 
International Conference on Computer-Aided 
Design (ICCAD) written by Tulika Mitra.

Many thanks to Scott Davidson for The Last Byte 
article titled “Is There an Answer?” 

I hope you enjoy reading this issue of IEEE 
Design&Test.

� <

Digital Object Identifier 10.1109/MDAT.2023.3243862

Date of current version: 10 March 2023.

Partha Pratim Pande, Editor-in-Chief
Washington State University
Pullman, WA 99164-2752 USA

Special Issue on Testability 
and Dependability of Artificial 
Intelligence Hardware
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Haralampos-G. Stratigopoulos
Sorbonne Université
French National Center for Scientific Research 
(CNRS), LIP6 Laboratory
75005 Paris, France

 Artificial intelligence (AI) hardware, 
including AI accelerators and neuromorphic com-
puting processors, emerges as one new frontier in 
the field of computing. There is an expedited par-
adigm shift in embracing bold and radical innova-
tion of computer architectures, aiming at the con-
tinuation of computing performance improvement 
despite the slowed-down physical device scaling. 
Testability and dependability of AI hardware need 
to be addressed before mainstream adoption, espe-
cially in latency or throughput-critical, safety-critical, 
mission-critical, or remotely controlled applications 
(e.g., computer vision, autonomous driving, smart 
healthcare, IoTs, and robotics). 

The guest editors of this Special Issue on Testa-
bility and Dependability of Artificial Intelligence 
Hardware have gathered manuscripts that cover 
innovative research from academia and industry for 
addressing the testability and dependability chal-
lenges of AI hardware arising from many aspects. 

This special issue comprises one survey paper 
and six articles. The survey paper [A1] from the 

guest editorial team covers the state-of-the-art in 
research and development of dependability and test-
ability solutions for AI hardware including digital or 
analog implementations of artificial neural networks 
(ANNs) and spiking neural networks (SNNs), used 
in accelerators and neuromorphic designs. Trends, 
challenges, and perspectives are also discussed in 
this article.

In [A2], Ozen and Orailoglu point out that the 
rules that govern the error resilience problem in neu-
ral networks deviate from those in general-purpose 
computing. While deep neural networks (DNNs) may 
inherently tolerate minor perturbations, there exists 
the potential vulnerability caused by a large-magni-
tude hardware error. This article presents a method 
where neural networks can learn and construct 
self-checking mechanisms to detect and suppress 
such large magnitude errors.

In [A3], Bertoa et al. present selective triple mod-
ular redundancy (TMR), an automated tool that ana-
lyzes the sensitivity of computations within neural 
network inference to the overall network accuracy. 
The tool then triplicates the most sensitive computa-
tions to increase the functional safety of the neural 
network accelerator, without resorting to full TMR. 

Guest Editors' IntroductionGuest Editors' Introduction



6 2168-2364/23©2023 IEEE Copublished by the IEEE CEDA, IEEE CASS, IEEE SSCS, and TTTC IEEE Design&Test

Guest Editors' Introduction

Prof. Partha Pratim Pande, the Associate Editor-in-
Chief Prof. Mehdi Tahoori, as well as the editorial 
staff of IEEE Design&Test for making this special 
issue possible.� 

Fei Su is a DFX and telemetry architect at Intel 
Corporation, Folsom, CA 95630 USA. His research 
interests include testability and dependability of 
semiconductor circuits/chiplets, artificial intelligence 
(AI)/ML hardware, cyber-physical systems, and edge/
cloud computing. Su has a PhD from Duke University, 
Durham, NC, USA. He is a Senior Member of IEEE.

Chunsheng Liu is the leader of the DFT Team at 
Alibaba Inc., Sunnyvale, CA 94085 USA. His research 
interests include test infrastructure for high-performance 
processors, FPGA and machine learning accelerators, 
and high dependability of cloud computing hardware. 
Liu has a PhD from Duke University, Durham, NC, USA. 
He is a Senior Member of IEEE.

The proposed method allows designers to explore 
the tradeoff between accelerator reliability and 
hardware cost.

In [A4], Omland et al. propose an application 
program interface (API)-based method for hard-
ware fault simulation to investigate the effect of 
hardware fault on DNN output failure probabil-
ity for common DNN accelerators. In a proof of 
concept presented in the article, speed ups of the 
order of >100 compared to full hardware simula-
tions have been achieved.

Silicon-photonic neural networks (SPNNs) are 
being explored as post-Moore’s law successors to 
CMOS-based AI accelerators, thanks to their ultra-
high speed and ultralow energy consumption. 
However, their accuracy and energy efficiency 
can be catastrophically degraded because of the 
sensitivity of underlying photonic components to 
fabrication process variations and run-time uncer-
tainties. In [A5], Banerjee et al. present a method of 
criticality assessment to identify susceptible com-
ponents of SPNNs. The results show that the criti-
cality of uncertainties varies significantly based on 
both the location and the tuned characteristics of 
the affected components.

In [A6], Kundu et al. focus on the reliability of 
DRAM utilized as the main memory subsystem in 
sparse DNN accelerators. Their analysis shows a 
single fault in the encoded memory compression 
bitmap causes a significant accuracy reduction in 
classification applications. The authors present a sys-
tematic quality-aware mitigation strategy with a low 
memory overhead.

In the last article of this special issue [A7], Paul et 
al. study read disturb failures of a nonvolatile mem-
ory (NVM) cell used in neuromorphic hardware to 
store model parameters. The authors propose a sys-
tem software framework to incorporate the insights 
from analysis in programming model parameters on 
NVM cells to mitigate the read disturbances.

We hope readers will enjoy reading these articles. 
We also hope any insights from this special issue will 
inspire more researchers from academia and indus-
try to take a new adventure in this new field.

We would like to thank all the authors who 
contributed to this special issue, the reviewers for 
providing constructive feedback, the past Editor-in-
Chief Prof. Jörg Henkel, the current Editor-in-Chief 

Appendix: Related Articles
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	[A2]	 E. Ozen and A. Orailoglu, “Shaping resilient AI 

hardware through DNN computational feature 

exploitation,” IEEE Des. Test, vol. 40, no. 2, 

pp. 59–66, Mar. 2023.

	[A3]	 T. G. Bertoa et al., “Fault-tolerant neural network 

accelerators with selective TMR,” IEEE Des. Test, 
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	[A4]	 P. Omland et al., “API-based hardware fault 

simulation for DNN accelerators,” IEEE Des. Test, 
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	[A5]	 S. Banerjee, M. Nikdast, and K. Chakrabarty, “On 

the impact of uncertainties in silicon-photonic 
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disturbances in neuromorphic inference hardware,” 

IEEE Des. Test, vol. 40, no. 2, pp. 100–108, 
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 Direct questions and comments about this article to 
Fei Su, Intel Corporation, Folsom, CA 95630 USA; fei.
su@intel.com.

Haralampos-G. Stratigopoulos is a 
research director of the French National Center for 
Scientific Research (CNRS) at the LIP6 Laboratory, 
Sorbonne Université, 75005 Paris, France. His 
research interests include neuromorphic computing, 
hardware security, and design-for-test of integrated 
circuits and systems. Stratigopoulos has a PhD 

from Yale University, New Haven, CT, USA. He is a 
Member of IEEE.
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Testability and Dependability of Artificial Intelligence Hardware

Testability and 
Dependability of AI 
Hardware: Survey, 
Trends, Challenges, and 
Perspectives

 Artificial intelligence (AI) and machine 
learning (ML) algorithms have been a subject of 
interest for several decades now. Although AI and ML 
have gone through hype cycles of disappointment 
and enthusiasm, recent algorithmic advancements, 
in particular, deep neural networks (DNNs) [1], 
as well as the availability of big data and the rapid 
growth of computing power, have renewed interest 
leading nowadays to applications in numerous dis-
tinct fields, for example, robotics, medicine, autono-
mous vehicles, computer vision, speech recognition, 

natural language process-
ing, gaming, and so on.

DNN models are com-
putational intensive, with 
their backpropagation 
training process taking up 
a number of operations in 
the order of millions. Infer-
ence on trained models 
requires a single forward 

pass, but still the number of operations remains very 
high. From a hardware perspective, this poses severe 
challenges to data storage, movement, and process-
ing speed on conventional central processing units 
(CPUs) with a traditional Von Neumann computer 
architecture, commonly known as the memory wall 
problem [2]. To this end, there are intense and ongo-
ing efforts nowadays toward designing dedicated and 
customized processors for AI [3], [4], [5], [6], [7], [8], 
[9], referred to as AI hardware accelerators, which 
belong to the larger family of domain-specific com-
puting paradigms. Widely used AI hardware accel-
erators today are graphics processing units (GPUs) 
and FPGAs, but orders of magnitude of energy-speed 
improvement can be achieved with ASICs.
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Another high incentive for designing AI hardware 
accelerators is to push the execution of AI algorithms 
from the cloud closer to the sources of data onto edge 
devices [10]. This is driven by energy, bandwidth, 
speed, availability, and privacy requirements. More 
specifically, edge computing reduces the data transfer 
requirement, thus saving energy and bandwidth. Sav-
ing bandwidth is important given the forecast that sev-
eral tens of billions of edge devices will be connected 
to the internet in the near future. Several applications, 
for example, autonomous vehicles, require low-latency 
real-time computation which is slowed down due to 
the communication with the cloud. Also, several appli-
cations require availability, and therefore they need to 
be less dependent on communication with the cloud. 
Finally, handling data locally offers privacy as opposed 
to transmitting sensitive data over the cloud. Edge AI 
is a challenging objective since edge devices have 
limited resources and are often battery-operated. Typ-
ically, AI hardware accelerators embedded on edge 
devices perform only inference with the DNN model 
trained in software and uploaded upfront.

Having stressed that AI hardware accelerators 
are pivotal in the AI world, many would believe that 
neural networks on hardware inherit the remarka-
ble fault-tolerant capabilities of the biological brain. 
Indeed, biological neural networks are capable 
of regenerating, rewiring, or adapting network ele-
ments to make up for the damage, which is part of 
their neuroplasticity ability [11]. This assumption 
also stems from properties of neural networks, such 
as their high parallelism and over-provisioning, that 
is, there are more neurons available than the mini-
mum required for a certain cognitive task and many 
neurons end up being ineffective. However, as it will 

be discussed in more detail in a later section, recent 
hardware-level fault injection experiments have 
shown that this assumption is false. A neural net-
work is likely to be capable of learning even in the 
presence of a high fault rate; however, the impact on 
prediction accuracy can be nonnegligible or even 
detrimental if a model is uploaded on a faulty hard-
ware neural network or if a fault occurs during the 
lifetime of the hardware neural network.

For these reasons, the testability and dependabil-
ity of AI hardware accelerators are important issues 
that need to be addressed already from the design 
phase [12]. Inspiration can, of course, be drawn 
from known and mature methodologies applied to 
traditional computer architectures, but the architec-
tural particularities of AI hardware accelerators often 
make such methodologies prohibitive in terms of 
cost and quality, requiring the development of new 
methodologies that are better suited and take full 
advantage of the said architectural particularities.

The aim of this article is to provide a survey of 
existing works on testability and dependability meth-
odologies for AI hardware accelerators and discuss 
trends, challenges, and perspectives. The high-level 
organization of this article into sections and their 
main subsections is shown in Figure 1.

Neural network types
We distinguish two types of neural networks, 

namely artificial neural networks (ANNs) and spik-
ing neural networks (SNNs). Both are inspired by the 
brain structure composed of layers assembled by 
neurons and synapses interconnecting the different 
layers. The term “deep” in DNNs refers to the number 
of layers going beyond just a few, allowing to extract 

Figure 1. Structure of this article.
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more complex features. The number of layers, the 
number of neurons within each layer, and synapse 
connections define a network topology.

There are three main topologies applied to both 
ANNs and SNNs: 1) fully connected (FC) networks; 
2) convolutional neural networks (CNNs) [13]; and 
3) recurrent neural networks (RNNs) [14]. Figure 2 
shows an example CNN with FC layers forming the 
last layers. In FC networks, the neurons of a new 
layer are connected via synapses to the outputs of all 
neurons in the prior layer. In CNNs, a convolutional 
layer is composed of several feature maps. A feature 
map is a plane of neurons where each neuron is con-
nected to the outputs of spatially nearby neurons 
contained in a lower dimensional plane of the prior 
layer, referred to as a receptive field. Each neuron has 
a different receptive field located at different coordi-
nates of the prior layer. In a given feature map, all 
neurons are constrained to share the same synaptic 

weights, whereas synaptic weights change from one 
feature map to another. Convolutional layers are 
alternated with subsampling layers which are used 
to downsample the output of the preceding convolu-
tional layer. There are different types of subsampling, 
such as max pooling and average pooling. Max pool-
ing captures the maximum value of the receptive 
field and processes it to the output, whereas average 
pooling calculates the average value. CNNs allow 
synapse reuse and reduce the number of synapses 
compared with an FC network. In RNNs, neurons 
can additionally receive as input their previous state 
or the previous state of a neuron in a subsequent 
layer, thus realizing an internal memory retaining 
past information to forecast future outputs. RNNs are 
used for learning on time-series or sequential data, 
while FC networks and CNNs are feed-forward and 
inputs are independent of each other.

In ANNs, data are represented as static numerical 
values. Neurons apply a nonlinear activation func-
tion, such as rectified linear unit (ReLU), sigmoid, 
and tanh, on the weighted sum of outputs of other 
neurons, as depicted in Figure 3. The weights are sca-
lar values and correspond to the synaptic weights.

In SNNs, on the other hand, data are represented 
with spikes processed in a continuous way in time, 
which is similar to brain operation. Thus, they are 
more biologically plausible compared with ANNs, 
bridging the gap between the ML and the biological 
brain in terms of computation speed and power con-
sumption [15]. SNNs form the basis of neuromorphic 

Figure 2. Architecture of LeNet-5 CNN.

Figure 3. Artificial neuron.
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computing as pioneered by Mead [16]. The most 
hardware-friendly spiking neuron implementation 
is the integrate & fire (I&F) model [17], depicted 
in Figure 4. The neuron integrates the spikes from 
incoming synapses, and when the potential of its 
membrane exceeds a threshold, it fires a spike of its 
own that propagates through synapses to other neu-
rons. It also resets the threshold so as to be able to 
fire again. The neuron has two additional brain-in-
spired functionalities. It has a refractory period, that 
is, it is allowed to fire only if a certain time is elapsed 
since the last output spike, and a leakage behavior, 
that is, the membrane potential decreases between 
two consecutive input spikes. The synapse opera-
tion is different from ANNs and also resembles the 
biological synapse operation. A synapse receives 
spikes and in turn stimulates the membrane poten-
tial of postsynaptic neurons via a current. The most 
common information representation in SNNs is rate 
coding, whereby the information is encoded into the 
firing rate over an observation period, but other rep-
resentations have been suggested, including time-to-
first-spike and interspike interval.

From a hardware perspective, there is a belief that 
SNNs offer faster inference and lower energy con-
sumption compared with ANNs. This belief stems 
from two SNN characteristics, namely the real-time 
asynchronous spike flow and the sparsity of the spike 
flow, which reduces neuron activities. In contrast, 
ANNs have a frame-based operation, that is, for a layer 
to perform its computation, the layer has to wait for 
the computation of the previous layer to complete 
and every individual neuron is being evaluated. How-
ever, SNNs are harder to train compared with ANNs 
due to the noncontinuity of the spiking neuron’s 
transfer function, as well as the additional parame-
ters a spiking neuron carries, for example, threshold, 
leakage rate, refractory period, which could be sensi-
tive. In general, the discussion on the relative perfor-
mance between ANNs and SNNs is not trivial due to 
the different input type, that is, the sequence of static 
frames versus continuous-time event flow. Converting 
a data set from frame-based to spiking format and vice 
versa creates a bias in the comparison. In general, the 
advantage of one neural network type over the other 
is task-dependent, with the SNNs being ideally suited 
for processing spatiotemporal event-based sensory 
data. For an extensive discussion on SNNs and the 
comparison with their ANN counterparts, the readers 
are referred to [5], [18], and [19].

AI hardware accelerators
Silicon implementations of neural networks 

appeared decades ago with early efforts demonstrat-
ing few-layers, few-neurons per layer networks [20]. 
Moving to larger designs for DNN acceleration, the 
main challenge is the memory wall that limits the 
throughput and increases power consumption. The 
design ambition is, therefore, to overcome the mem-
ory wall by distributing the memory within close prox-
imity to the processing elements (PEs), for example, 
the multiple–accumulate (MAC) units, or through 
the interleaving of memory and PEs. Basic architec-
tures include the streaming architecture composed of 
many cores with the layers mapped among the cores 
and the single-core architecture, that is, in the form 
of a systolic array that parallelizes the storage and 
computation of the different layers [3]. SNNs typically 
employ the streaming architecture with a core receiv-
ing and transmitting spikes via the address event 
representation (AER) protocol that essentially imple-
ments a network-on-chip (NoC) communication 
scheme [21]. Clearly, efficient mapping of the neu-
ral network algorithm onto the hardware becomes 
of utmost importance and different neural network 
topologies require different hardware designs to fully 
take advantage of neuromorphic computing.

Figure 4. Spiking neuron.
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Analog and mixed-signal (AMS) implementa-
tions can offer orders of magnitude lower power 
consumption compared with their digital counter-
parts, and therefore they are better-suited for edge 
computing being capable of acting directly on sen-
sory data from the world–machine interfaces [22], 
[23]. This is because transistors are operated in the 
subthreshold region, and the main operations of a 
neural network, that is, addition and multiplication, 
can be performed efficiently in the analog domain. 
Addition can be performed using Kirchhoff’s current 
law, while multiplication can be performed with just 
a few transistors. However, they are less robust due 
to process variations and noise.

One way to reduce energy consumption is approx-
imate computing that involves two strategies. The first 
uses approximate arithmetic units in the PEs [24]. The 
second is termed network compression or quantiza-
tion [25]. It reduces the precision of the weights and 
neuron activation values by transforming floating-point 
numbers into narrow few-bit integers. At the extreme, 
this results in binary neural networks (BNNs) that use 
1-bit precision [26], further simplifying the network 
architecture by using xnors instead of MAC units [27]. 
BNNs save energy and storage and can serve for imple-
menting deep models in resource-constrained edge 
devices. Network compression results in accuracy loss 
but it may be recovered through training.

Another design paradigm with tremendous poten-
tial for overcoming the memory wall is in-memory 
computing where the matrix–vector multiplications 
are performed within the memory itself [28], [29]. 
In-memory computing has two main embodiments, 
namely performing arithmetic and logic operations 
within the SRAM or using memristive crossbar arrays.

A memristive crossbar array is composed of hori-
zontal and vertical metal lines with a memristive 
device placed at each cross-point intersection con-
necting the two metal lines, as shown in Figure 5. The 
conductance of the memristive device implements 
the synapse weight, horizontal lines are driven by 
the voltage output of presynaptic neurons, and ver-
tical lines provide the current input of postsynaptic 
neurons. Each column implements the dot product 
Ii = Σj Gi,j • Vj and parallelized dot-products across the 
columns implement efficient in-situ matrix-vector mul-
tiplication I = G • V in analog form, reducing computa-
tional complexity from (n2) to (1). Each memristive 
device is augmented with an access device, as shown 
in the 1-transistor/1-resistor (1T1R) architecture of 

Figure 5, that allows selecting a memristive device for 
programming while not disturbing the stored state of 
other memristive devices. A memristive crossbar array 
is accompanied by peripheral circuits (not shown 
in Figure 5) if communication between crossbars is 
implemented in the digital domain. These include dig-
ital-to-analog converters (DACs) and analog-to-digital 
converters (ADCs), which contribute a large fraction of 
the area and power consumption of the array macro.

There are several emerging nonvolatile memory 
(NVM) devices that can be used to implement the 
memristive device, including resistive random access 
memory (ReRAM), phase change memory (PCM), 
and spin transfer torque magnetic random access 
memory (STT-MRAM) [30]. These devices are com-
pact and can perform read and write operations with 
low power. However, they suffer from several imper-
fections, such as conductance variations and drifts, 
which result in poor yield, stability, and endurance. 
Therefore, enhancing the reliability of crossbar-array 
computation is a subject of ongoing research.

Finally, 3-D integration technologies could offer 
several advantages such as short interconnections, 
high parallelism, high bandwidth, and small form 
factors [31], [32].

A taxonomy of AI hardware accelerators is illus-
trated in Figure 6. The first layer defines the type of 
neural network, that is, ANN or SNN. The second 
layer defines different design flavors, that is, dig-
ital or AMS, with in-memory computing inserted 
as a separate category. The third layer defines the 

Figure 5. Memristive crossbar array.
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implementation, that is, ASIC, FPGA, and so on, while 
in-memory computing is further distinguished into 
digital processing-in-memory, that is, SRAM-based 
in-memory computing, and memristive crossbar 
arrays. In Figure 6, we provide references to repre-
sentative designs with a focus on designs that have 
been demonstrated on silicon. Regarding memristive 
crossbar-array accelerators, most works present only 
simulation results up to now. This list of references is 
not meant to be complete. For recent and thorough 
surveys on accelerator design for ANNs and SNNs, 
the readers are referred to [3], [4], [6], [7], [8], [9], 
and [5], respectively.

Fault criticality assessment 

Introduction
In the context of an AI hardware accelerator, 

many faults turn out to be benign: they are masked 
before their effect reaches the output or produce an 
output change that is tolerable, that is, it does not 
translate to performance loss. This is thanks to the 
network sparsity, the over-provisioning, the distrib-
uted computing, and the nature and sequence of 
mathematical computations. Some faults, however, 
will be critical and will affect the performance. A 
fault classification is shown in Figure 7. The ability 
to quickly assessing the impact of faults on the AI 
hardware accelerator performance is very valua-
ble for performing early reliability analysis and for 
guiding the development of efficient and cost-effec-
tive fault detection, fault tolerance, and fault repair 
schemes by placing the focus on targeting the crit-
ical faults only.

A network is viewed as a distributed system 
where neurons and synapses can fail independently 
[58]. Given a large number of synapses and neu-
rons, the size of the fault space easily explodes, not 
to mention the rest of the hardware components. 
On the other hand, the fault impact is typically 
expressed in terms of accuracy drop on the testing 
set, which can contain several thousands of sam-
ples, while the time for a single inference can be 
very long. For these reasons, performing fault sim-
ulation at the hardware level can be intractable, 
thus necessitating fault modeling approaches at a 
higher abstract level. As a matter of fact, performing 
exhaustive fault injection even on a higher abstract 
network representation may still not be feasible, 
thus necessitating fault sampling.

Another challenge in fault modeling is that 
the fault impact is determined by the interactions 
between the network model, the data set, and the 
AI hardware accelerator. When analyzing the fault 
impact, the AI hardware accelerator architecture 
and the scheduling of network operations on its 
architectural components cannot be ignored [59].

Figure 8 shows a fault injection experiment flow. 
Starting with a fault model, a fault list is created as 
a subset of the fault universe possibly using fault 
sampling. A single-fault assumption or multiple-fault 
scenario with a user-specified fault rate can be con-
sidered in this step. Then fault injection is performed 
on the AI hardware accelerator which could be 

Figure 6. Taxonomy of AI hardware 
accelerators.
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done at different insertion levels, that is, in a soft-
ware model, RTL level, microarchitectural level, 
gate level, transistor level, on an actual hardware 
prototype, or with radiation. For every fault scenario, 
the fault impact is assessed and stored. After going 
through the complete fault list, a report is produced, 
for example, including the benign and critical faults, 
the critical fault locations, and the fault rate that can 
be tolerated.

Examples of fault criticality visualizations are 
shown in Figure 9. In Figure 9a, the x-axis shows 
the different layers and for each layer, there are two 
columns, each corresponding to a different fault 
type. A column is a colored bar possibly separated 
into chunks of different colors. Each chunk of the 
bar corresponds to a specific classification accu-
racy according to the color shading shown at the 
bottom of Figure 9, and the projection on the y-axis 
shows the percentage of neurons for which the fault 
results in this classification accuracy. While Figure 

9a shows the cumulative neuron criticality across 
layers, Figure 9b shows the per-neuron criticality as 
a heat map with the neuron number in the x-axis 
and the layer number in the y-axis. Each orthogo-
nal corresponds to one specific neuron, and the 
color of each orthogonal corresponds to the clas-
sification accuracy in the presence of a fault in 
the neuron according to the color shading at the 
bottom of Figure 9. Figure 9c displays the impact on 
classification accuracy of synapse faults in the syn-
aptic matrix between two layers. Using such plots, 
one can label faults as critical or benign and iden-
tify critical fault locations across layers and within 
each layer.

As we will see next, most research works con-
sider bit-flips in the memories and registers storing 
the network parameters, that is, synapse weights and 
neuron activations. For this fault model, examples of 
reliability assessment are shown in Figure 10. Bit-flips 
can be injected with some bit error rate (BER) prob-
ability to assess the largest BER that can be tolerated, 
as shown in Figure 10a. The experiment is repeated 
several times, and summary statistics are visualized 
in Figure 10a using box plots. The bottom and top 
edges of the box indicate the 25th and 75th percen-
tile, respectively. The whiskers extend to the most 
extreme data points without considering outliers, 
and the outliers are plotted individually using the 
“o” symbol and are not always aligned vertically for 
illustration purposes. Figure 10a also illustrates the 
baseline fault-free accuracy shown with the green 
zone, the median shown with a dotted circle, and 
the average accuracy across repetitions of the same 
experiment shown with a red line. Bit-flips can also 
be injected at individual bit positions as shown in 
Figure 10b where the network parameter has an 8-bit 
representation. For example, with the results in Fig-
ure 10b, we can identify those bits starting from the 
least significant bit (LSB) that have no impact on the 
accuracy if they are flipped and can be left unpro-
tected in a fault-tolerant strategy.

In the upcoming section, we survey several works 
demonstrating fault injection experiments and 
frameworks. Figure 11 shows different fault types 
at different insertion levels. A taxonomy of works 
is provided in Table 1 based on the fault insertion 
level, while memristor crossbar-based architectures 
are treated as a special category. In the upcoming 
section, we summarize the general conclusions from 
these experiments.

Figure 7. Fault classification. Images are from [57].
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Fault injection experiments

Software level
The software and hardware implementation of 

a neural network matches closely in terms of com-
ponent connectivity and data flow, thus allowing 
performing fault injection in software in a more 
time-efficient manner. This was noticed in early 
works [58], [61], [62], [63] where structural behav-
ioral-level fault models were used in the main 
software operators that support the network compu-
tational task, that is, neurons and synapses. Behavio-
ral-level fault types included stuck-at nodes, missing 
or saturated neurons, errors in the summation or 
the evaluation of the neuron’s nonlinear activation 
function, errors in synaptic multiplication, disabled 
or saturated weights, errors in learning rules, noisy 
inputs, and so on. These behavioral-level faults can 
be mapped to physical fault models and root causes 
in hardware, that is, gate-level stuck-at faults and soft 
errors, for both digital and analog circuit implemen-
tations of neural networks [64], [65]. In [58], a the-
oretical study is presented for feed-forward neural 
networks (FFNNs) deducing the number of failing 
neurons and synapses an FFNN can tolerate.

As there is a large body of work in this direction 
for modern AI hardware accelerators, we categorize 
them according to the two neural network types, 
namely ANNs and SNNs.

ANNs
In [57], the fault model used is bit-flips in data-

paths and buffers. A wide range of data types are 
considered, and bit flips are injected in different bit 
positions. Fault injection is carried out in the open-
source DNN simulator framework Tiny-CNN written 
in C++, where each line of the code is mapped to 
the corresponding hardware component so as to 

Figure 8. Fault injection experiment flow.

Figure 9. Fault criticality visualization. (a) Cumulative 
neuron fault criticality across layers. (b) Per-neuron 
fault criticality. (c) Synapse fault criticality.
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pinpoint the impact of the fault injection location 
in terms of the underlying microarchitectural com-
ponents. The focus is on CNNs considering differ-
ent image classification tasks. Different types of 
silent data corruption (SDC), defined as a mismatch 
between the output of a faulty and the fault-free 

inference execution, or “fault ratings” are proposed 
taking into consideration that networks may rank 
predictions based on a confidence score. Some 
conclusions of this large-scale fault injection study 
are: 1) different DNNs have different sensitivities to 
SDCs depending on the topology, the types of layers, 
the data type used, and the position of the bit flip; 
2) failure in-time (FIT) rates can exceed the safety 
standards, for example, ISO 26262 for automotive, by 
orders of magnitude; 3) data types that provide more 
dynamic value range are more vulnerable to SDCs 
since there are likely to be redundant value ranges 
that lead to larger-value deviation under faults. This 
implies that just-enough numeric value range and 
precision is advantageous from a reliability point of 
view; and 4) normalization layers reduce the impact 
of faults by averaging fault values with adjacent cor-
rect values.

In [66], the Ares framework is proposed that 
simulates static bit-flips in the memory of the DNN 
accelerator. Ares is built on top of Keras [119], 

Figure 11. Faults models at different insertion levels. The chip image corresponds 
to an AMS implementation of an FC network used as an on-chip classifier for BIST 
purposes [60].

Figure 10. Reliability assessment using 
bit-flips as a fault model. (a) Accuracy 
drop for bit-flips with different BER levels. 
(b) Accuracy drop for bit-flips at different 
positions of the word representing a 
network parameter.
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which takes high-level DNN descriptions specified 
in Python and executes them using either Theano 
[120] or TensorFlow [121] backends. Fault injection 
experiments are performed for several DNN models 
and data sets to study the classification rate as a func-
tion of BER. Fault injection is performed across the 
whole network, per-layer, and across network com-
ponents, that is, weights and activation functions. 
The main conclusions of this study are: 1) a thresh-
olded behavior is observed where for small BERs, 
the classification error is zero, but there is a BER 
threshold beyond which the classification error rises 
exponentially from zero; 2) there is a largely spread 
fault sensitivity or resilience across the DNN models, 
for example, the threshold varies by two orders of 
magnitude; 3) the weight quantization impacts resil-
ience, that is, the larger the range of the possible 
weight values is the lower the threshold is; and 4) 
fault sensitivity across network layers and compo-
nents can vary by several orders of magnitude.

In [67], the FIdelity DNN resilience analysis 
framework is proposed where hardware faults are 
modeled in software, that is, TensorFlow [121]; 
thereafter, high-speed software fault injection is per-
formed. In this way, an analysis speedup is achieved 
while maintaining the level of accuracy of RTL or 
mixed-mode fault injection techniques. To map 
hardware faults in the software, the key insight is that 
hardware and software operations closely match, 
and all operations affected by a fault can be sys-
tematically derived, thanks to well-defined dataflow 
and scheduling algorithms. Given high-level archi-
tecture/hardware information and flip-flop (FF) FIT 
rate, the framework captures the effect of hardware 
faults to set a faulty output neuron using a reuse fac-
tor analysis for FFs. Faulty output neuron values are 
derived considering that each FF value already cor-
responds to a software-variable state. A key aspect 
of the framework is that it can treat logic transient 

 
Table 1. Taxonomy of fault injection experiments 
and frameworks.

errors in the data path and control FFs and not only 
memory errors.

In [68], a methodology is proposed to reduce the 
fault injection space and, thereby, the overhead of 
exhaustive fault injection. The underlying observa-
tion is that most ML functions in a DNN model, that 
is, convolution, ReLu, pooling, normalization, and 
so on, are monotonic. This means that in a word 
representing a model parameter, there exists an 
SDC-boundary bit such that bit-flips at higher-order 
bits would lead to SDCs and bit-flips at lower-order 
bits would be masked. Based on this observation, 
the binary fault injection (BinFI) fault simulator is 
proposed that bisects the fault injection space and 
finds the SDC-boundary bit with a binary-search-like 
algorithm. BinFI is built on top of the TensorFlow 
framework [121] duplicating the graph with custom-
ized operators.

In [69], a fault injection framework is proposed 
that reproduces fault models and event rates 
extracted from radiation tests. The ultimate goal 
is to have the flexibility of a software-based fault 
injector with a reliability assessment precision 
close to this of an accelerated neutron beam radi-
ation-based fault injection experiment in a realistic 
harsh environment.

The interested reader is referred to [70], [71], 
[72], [73], [74], [75], [76], [77], [78], [79], [80], 
[81], [82], [83], [84], and [85] for more soft-
ware-based fault injection experiments studying the 
fault impact for different neural network models, 
data type representations, layer types, network sizes, 
pruned networks, compressed versus uncompressed 
networks, and so on. Such experiments are also part 
of several other works that will be discussed in the 
upcoming sections and they are used for motiva-
tion or for guiding test and dependability solutions. 
Many of these works developed at the same time 
an in-house automated fault injection framework. 
The development of automated, fast, flexible, and 
accurate fault injection frameworks is an active area 
of research. Examples include PyTorchFI [86] and 
TensorFI [87], which are open-source and publicly 
available, and CLASSES [88]. An interesting research 
line is the development of ML-based frameworks 
that based on a small number of fault injections 
estimate the vulnerability for all parameters in the 
DNN in a short time [89]. Such approaches will be 
described in more detail in upcoming sections for 
systolic-array DNN architectures at the gate level and 
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for memristor crossbar-array architectures. Another 
possibility is to use generic fault injection tools, 
such as SASSIFI [122], NVBitFI [123], and CAROL-FI 
[124], to emulate fault effects in the hardware plat-
form, that is, GPU, running the application.

SNNs
The fault-tolerant characteristics of SNNs trained 

with different algorithms are studied in [90]. The 
fault model is a synapse fault where a faulty synapse 
is zeroed out or equivalently removed. Synapses 
are selected to be faulty at random with different 
failure rates. Results show that these different algo-
rithms have different resilience characteristics. 
Resilience can greatly depend on the training algo-
rithm and data set, and it can also show large var-
iances according to the synapses that are selected 
to fail. A common conclusion is that for all consid-
ered networks, resilience drops rapidly as fault rates 
increase, and SNNs are not inherently resilient as it 
is frequently cited.

In [91], the behavioral-level fault model pro-
posed in [100] (see the upcoming section) is used 
to perform accelerated fault injection in deep SNNs. 
The fault injection framework is built on top of the 
SLAYER [125] and PyTorch [126] frameworks by 
customizing the flow of computations and the faulty 
SNN is mapped onto a GPU. The general conclusion 
of this experiment is that saturation neuron faults 
are the most lethal and can severely affect inference 
regardless of the location of the neuron in the net-
work and that the impact of all other fault types, that 
is, dead neuron faults and timing variations, may be 
severe only for neurons in the last hidden and output 
layer. At the extreme, timing variations could result 
in a dead or saturated neuron. In other words, a neu-
ron that becomes permanently active has a greater 
effect on inference compared to a neuron that is per-
manently silenced or presents timing variations in its 
output spike train.

RTL level
In [92], fault characterization is performed 

on an RTL design of a typical accelerator. Fault 
injection is performed into the different registers 
that latch data during the inference, that is, input, 
weights, and intermediate layer computations. The 
fault model includes permanent stuck-at faults and 
transient faults occurring in a single random cycle. 

In each fault injection experiment, a different fault 
is randomly generated and injected by selecting 
a random register and set of bits and a random 
cycle in the case of transient faults. Fault charac-
terization is performed across the different register 
types, layers, and components of fixed-point data 
representation, that is, sign, digit, and fraction, 
number of PEs, and network models. General con-
clusions are: 1) permanent faults are more critical 
than transient faults; 2) stuck-at-1 faults are more 
critical than stuck-at-0 faults due to the sparsity of 
zeros; 3) registers storing intermediate data are 
the most vulnerable, whereas input registers are 
the least vulnerable; 4) permanent faults are more 
critical in inner layers, that is, closer to the output, 
while the opposite is observed for transient faults; 
5) sign, digit, and fraction are in this order more 
vulnerable; and 6) for permanent faults, the error 
decreases with the number of PEs, while there is 
no correlation in the case of transient faults.

In [93], an RTL-level fault injection framework 
is proposed that drastically reduces the fault sim-
ulation time. It makes use of a multilevel structure 
where on the lower level, the inference is split 
into several blocks corresponding to the neural 
network layers that run as standalone application 
processes, and on the upper level, these processes 
are synchronized.

Microarchitectural level
In software fault injection, the fault model risks 

being unrealistic and faults can be mapped to 
only a subset of hardware resources. In [94], the 
concept of two-level fault injection is adopted to 
evaluate the effects on CNN execution of faults in 
the GPU’s scheduler and pipeline registers, two 
microarchitectural components that otherwise 
would be hidden in an abstract high-level CNN 
model. The microarchitectural simulation requires 
a prohibitively high time. To improve efficiency, 
the two-level fault injection idea is composed of 
the following steps: 1) perform microarchitectural 
fault injection, that is, transient bit-flips; 2) observe 
the effect on selected CNN tiles (i.e., matrix por-
tions); 3) merge the corrupted tiles’ output with 
the other tiles in the convolution considering their 
fault-free output to compose the layer’s output; and 
4) continue the execution of CNNs at the software 
level to check if the fault is eventually masked or it 
propagates at the output creating an error. Finally, 
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a feedback analysis can determine the microar-
chitectural locations causing the observed critical 
errors that should be targeted for hardening.

Gate level
In [95], fault injection experiments are performed 

on a systolic array-based DNN accelerator. The core 
of the systolic array is composed of a 256 × 256 grid 
of MAC units. Each weight maps to exactly one MAC 
unit, thus a faulty MAC unit can result in multiple 
faulty weights. The systolic array is developed in 
Verilog and synthesized at the gate level. The fault 
model includes stuck-at faults at the gate level and 
timing faults created by under-scaling the power sup-
ply which essentially emulates process variations. 
It is demonstrated that training on a faulty systolic 
array can result in a significant classification drop 
when as few as four MAC units are faulty.

In [96], the impact of timing variations on the 
hardware implementation of ANNs is studied. Tim-
ing variations could result from delay defects, pro-
cess variations, power supply noise, crosstalk, aging, 
voltage over-scaling, or frequency overclocking. 
Timing variations are modeled at the gate level by 
introducing an extra delay variation in the range of 
10%–40% into each gate relative to the nominal gate 
delay. Results show that ANNs are sensitive to timing 
variations with the error growing larger as the timing 
variations worsen. Accuracy loss can be alleviated to 
a large degree but not fully recovered if the ANN is 
retrained under timing errors.

In [97] and [98], ML-based frameworks are pro-
posed for analyzing the functional criticality of 
gate-level stuck-at faults in systolic array-based AI 
accelerators. Fault injection targets not only the 
interface/boundary level of a PE, but also all internal 

nodes of a PE. The main challenge of such a task 
is on computation/simulation overhead introduced 
by a significantly large number of potential fault 
injection points, for example, there will be tens of 
thousands of stuck-at faults for a single 32-bit PE, and 
billions for a 256 × 256 PE array. To this end, compu-
tationally efficient ML-based methods are proposed 
to speed up the analysis. The basic idea is based on 
the use of deep learning to predict fault criticality 
by utilizing the structural and data flow features. For 
example, in [98], a two-tier DNN-based model is pre-
sented, as illustrated in Figure 12. The first-tier DNN is 
trained on a data set obtained from ground-truth col-
lection. The second-tier DNN is trained on a smaller 
and targeted data set containing the critical faults 
mispredicted as benign by the first-tier DNN. A gen-
erative adversarial network (GAN)-based method is 
further used to augment the data for the second-tier 
DNN, to minimize misclassification (i.e., misclassify 
critical faults as benign). The transferability of the 
proposed method is also investigated (i.e., if a fault 
criticality model trained on a PE can be transferred 
to evaluate a different PE). The results show that 
there exists some inherent transferability across PEs 
in the same array, mainly due to their identical topol-
ogies. On the other hand, more model retraining will 
be needed if transferability is not met.

Transistor level
Transistor-level fault simulations can be per-

formed only at the neuron level or for small-sized 
networks.

In [99], transistor-level short- and open-circuit 
defects are injected into the fundamental logic 
operators of a perceptron, that is, adders and multi-
pliers. Fault injection experiments in a shallow two-
layer classical fully digital spatial expansion ANN 

Figure 12. ML-based method for criticality assessment [98].
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architecture have demonstrated that hidden layers 
can tolerate defects even for high defect rates. How-
ever, depending on the affected bits or neurons, 
there may be single defects that can influence the 
inference accuracy. Defects in hidden layers can be 
silenced out by a retraining operation with the hard-
ware in-the-loop even for high defect rates. In con-
trast, the output layer is a defect-sensitive layer, and 
defects in this layer cannot be masked by retraining 
necessitating a dedicated fault tolerance scheme.

In [100], defect simulations and Monte Carlo 
analysis taking into consideration the technology 
process design kit (PDK) are performed for a spiking 
neuron. The different faulty behaviors are collected 
and grouped so as to generate an abstract behavio-
ral-level fault model for spiking neurons that captures 
the effects of low-level faults, that is, transistor-level 
defects and process variations. Faulty behaviors turn 
out to be either catastrophic (i.e., dead neurons that 
are silenced even in the presence of input activity, sat-
urated neurons that fire nonstop even in the absence 
of input activity, neurons with a stuck output, etc.) 
or parametric (i.e., timing variations of the output 
spike train such as variations in the time-to-first-spike 
and firing rate). This bottom-up behavioral-level fault 
modeling approach starting from transistor-level sim-
ulations can help generate fault models at a higher 
abstraction level to be used for software fault injec-
tion, while still capturing the effect of underlying 
root-cause transistor-level faults on the neuron’s 
output, independent of its actual hardware imple-
mentation. For example, dead and saturated neuron 
behavior can be modeled in the output spike train, 
while timing variations can be modeled by varying 
various neuron parameters, for instance the neuron’s 
membrane potential threshold.

Chip level
Software-based fault injection is fast and flexible 

but it ignores the behavior of the AI hardware accel-
erator. RTL-level, microarchitectural-level, gate-level, 
and transistor-level fault injection takes into consid-
eration the hardware, but it is slow and inevitably 
limited to specific hardware blocks.

FPGA-based hardware accelerators offer the pos-
sibility to perform realistic fault injection, including 
faults that would be difficult to model with software 
simulation, for instance faults affecting the configura-
tion memory or controlling modules. They also offer 
the possibility to evaluate both accuracy degradation 

and system exceptions, such as system stall and run-
ning overtime. Fault injection experiments on acceler-
ators implemented on FPGAs are presented in [101], 
[102], [103], [104], [105], [106], [107], and [108]. In 
particular, fault injection experiments are performed 
on the FPGA-based FINN quantized neural network 
(QNN) accelerator [56] in [101], [103], [104], and 
[105], for the tinyTPU implemented on an FPGA in 
[107], for FPGA implementations of custom ANN 
accelerators in [102] and [106], and on neuromor-
phic FPGA-based hardware supporting SNNs in [108].

In [109] and [110], the soft error reliability of 
CNN models running on microprocessors is inves-
tigated, analyzing the results for different compo-
nents of the microprocessor and precision bitwidth 
configurations.

Radiation experiments
Experiences from radiation experiments on 

different GPUs running different DNN models are 
described in [81], [82], [83], and [84]. In [81], FIT 
rates are scaled to a natural terrestrial environment. 
Main observations are as follows: 1) crashes are 
more frequent than SDCs but are less critical as they 
can at least be detected; 2) all reported SDC rates are 
higher than the 10 FIT limit imposed by the ISO 26262 
safety standard for automotive, thereby the reliability 
of GPU-based AI accelerators is paramount; 3) FIT is 
dependent on the technology, that is, for FinFET, it 
is an order of magnitude lower than that of standard 
CMOS; and 4) error correction code (ECC) protec-
tion alone is insufficient to ensure high reliability. 
In [82], the FIT rate is evaluated for different data 
precisions, showing that it increases with precision 
since it depends not only on the fault propagation 
probability, but also on the probability of the fault 
occurrence. In [83], the run-time of the inference 
is tuned based on the beam flux such that the chip 
experiences no more than a single bit flip event dur-
ing each application run. The study shows that with 
the ECC/parity checking enabled, single-bit errors 
are corrected, no SDCs are observed, and the most 
stringent ASIL D requirement imposed by ISO 26262 
is met. However, vulnerability to permanent faults 
is observed, which shows that ECC/parity checking 
must be complemented with periodic structural tests.

Accelerated radiation testing results for DNNs 
running on FPGAs are reported in [85], [111], 
[112], and [113]. In [85], it is shown that applying 
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selective triple modular redundancy (TMR) to only 
the most vulnerable layers can mask a high percent-
age of faults. In [111] and [112], it is evaluated how 
reducing the bit-width used for data representation 
impacts the radiation sensitivity and failure rate. In 
[113], it is shown that QNNs trained with fault-aware 
training are more resilient to soft errors.

Finally, results on the reliability of Google Coral 
tensor processing unit (TPU) to neutrons are reported 
in [114], considering elementary operations and sev-
eral CNN models. It turns out that, despite the high 
error rate, most neutron-induced errors only slightly 
modify the convolution output and do not change 
the detection or classification of CNNs.

Memristor crossbar-based architectures
The work in [115] studies the fault injection effect 

in memristor crossbars. The fault model includes 
stuck-at faults in the conductance of memristors after 
programming. The conductance error is defined as 
the difference between the final programmed value 
and the target value. A device with a conductance 
error higher than a positive threshold is considered 
to have a stuck-on fault, that is, it freezes at a high 
conductance state. Whereas a device with a con-
ductance error below a negative threshold is consid-
ered to have a stuck-off fault, that is, it freezes in a 
low conductance state. Fault injection experiments 
show that inference accuracy drops by more than 
50% for a stuck-at memristor rate of 20%.

The work in [116] proposes a fault model for 
SNNs using memristor crossbars for the con-
nection of the layers. Spike timing-dependent 
plasticity (STDP) is used for learning. Some specif-
icities of the SNN design are that the output neu-
rons are implemented with lateral inhibition, and 
synapses are off when there is no activity on their 
connected neurons. The fault taxonomy is divided 
into different synapse faults and neuron faults. 
Synapse faults include dead synapses, degraded 
plasticity, and synapse stuck-at faults. Neuron 
faults include dead neurons and delayed spiking, 
as well as faults specific to this SNN design, that is, 
stuck-at or delayed lateral inhibition and delayed 
synapse activation fault. Fault injection experi-
ments considered only the worst-case faults, that 
is, dead neurons and dead synapse faults. Results 
show that a high fault density is required for a 
noticeable decrease in recognition rate. Moreo-
ver, for dead neuron faults, learning on a faulty 

network is more critical than a fault occurring in a 
fault-free trained network.

In [117], the susceptibility of ReRAM-based cross-
bar arrays to single-event and cumulative radiation 
damage is investigated. Simulations are performed 
using an experimentally derived memristor SPICE 
model. Results for an ANN trained with the MNIST 
data set indicate that the system is highly resistant 
to transient single-event effects (SEEs), thanks to the 
low cross section of the memristive device. Moreover, 
the cumulative ionizing dose level corresponding to 
the inference failure point is very large, and thus it 
is concluded that ReRAM-based accelerators have 
high radiation tolerance in normal environments.

In [118], it is proposed to train an ML classifier to 
predict fault criticality in a DNN mapped to memristor 
crossbars. The considered fault types are stuck-on and 
stuck-off conductance in the memristor cell. The train-
ing set is generated by: 1) random fault injection for 
which the overwhelming majority of analyzed faults 
will be benign and 2) a misclassification-driven train-
ing (MDT) algorithm to quickly identify critical faults 
so as to have a balanced training set. The MDT algo-
rithm runs an optimization where the DNN parameters, 
that is, weights, are perturbed toward maximizing the 
prediction error. In each iteration, the most significant 
parameter based on gradient value is chosen. A fault is 
injected in this parameter and is identified as a critical 
fault if all samples in a batch of the data set are mispre-
dicted. The features from the benign and critical faults 
used to train the ML classifier are: 1) fault location; 2) 
fault type; 3) parameter significance; and 4) parameter 
deviation amount. The fault criticality analysis can be 
used to develop a fault tolerance solution that targets 
only critical faults, thus leading to a significant reduc-
tion in the redundancy needed for fault tolerance. The 
proposed criticality-aware fault-tolerant scheme used 
in this work is to introduce spare columns for remap-
ping only columns in the memristor crossbar that 
include cells with critical faults.

General observations from fault injection 
experiments

Some common conclusions in the above fault 
injection experiments are as follows.

1)	 The fault impact depends on the DNN topology, 
type of layer, and type of activation function 
used. Moreover, fault sensitivity across layers and 
across neurons within a layer can vary by several 



22 IEEE Design&Test

Testability and Dependability of Artificial Intelligence Hardware

orders of magnitude. Typically, the output layer is 
a highly sensitive layer necessitating a dedicated 
fault-tolerance scheme. Convolution and FC lay-
ers tend to spread the SDCs, while subsampling 
layers tend to mask a significant portion of SDCs. 
Moreover, very frequently, a bimodal behavior 
is encountered: either the accuracy is negligibly 
impacted by the fault, or the accuracy drops rap-
idly even approaching random guessing.

2)	 FIT rates of AI hardware accelerators can exceed 
safety standards, which shows that reliability and 
error recovery are of paramount concerns.

3)	 The accuracy drop is contingent on the data set, that 
is, the application. The same fault can be benign for 
one data set but can be critical for another.

4)	 Fault susceptibility depends on the data type 
used. DNNs using data types of higher dynamic 
range are more vulnerable. Still, even QNNs with 
2-bit precision are shown to be vulnerable. Sus-
ceptibility also depends on the affected bit posi-
tion, with the most significant bits (MSBs) being 
the most critical.

5)	 Stuck-at-1 faults furnish the largest accuracy drop 
because typically over 99% of model parameters 
have zeros in their MSBs.

6)	 For systolic array-based accelerators, by increas-
ing the number of layers or the number of neu-
rons per layer, the accuracy drop escalates [127]. 
This is due to the reuse of the systolic array across 
multiple layers.

7)	 For memristor crossbar-based architectures, sin-
gle memristor yield and endurance are very low, 
necessitating yield-rescuing methods.

8)	 For SNNs, saturation neuron faults seem to be the 
most lethal, although dead neuron faults can also 
cause significant accuracy drops.

Testability

Introduction
The goal of testability in AI hardware accel-

erators is no different from traditional hardware: 
achieving acceptable test quality under managea-
ble cost. It is confronted by the same problems as in 
the traditional test but with new challenges. While 
some challenges can be handled by existing tools 
and solutions, many still remain major problems in 
today’s DFT applications. Some typical issues seen in 
the industry are discussed below.

Being domain-specific, AI hardware accelerators 
usually have some unique features that may not be 
test-friendly. The most prominent one is the sea-of-
core design, for example, 1,472 cores in Graphcore 
GC200 [128], 128 × 128 systolic array in Google’s TPU 
[129], or even more such as 850 K cores in CS-2 [130]. 
While the notion of “core” in different accelerators 
may be very different in size, cores in one design 
are usually identical or very similar. From DFT and 
physical design perspectives, these cores may be 
too small to implement DFT on a per-core basis with 
reasonable overhead. On the other hand, incorpo-
rating many cores in a physical partition could lead 
to prohibitive costs for DFT or physical implemen-
tation and verification, while not taking the advan-
tage of the similarities among cores. Attempting to 
achieve the best test quality with reasonable over-
head, there has been plenty of research on low-cost 
testing of systems with identical cores [131], [132], 
[133]. However, for today’s AI architectures, an opti-
mal solution might be further explored from other 
angles, for instance the function structure may help 
increase DFT test coverage [134], and function pat-
terns may become part of test patterns [135].

AI applications are memory-intensive, hence 
many AI hardware accelerators require embedded 
memories with much larger sizes than in traditional 
ASIC designs. Several megabytes are common 
practices, for instance 900 MB in Graphcore GC200 
[128]. While these memories can be extensively 
tested and repaired using today’s built-in self-test 
(MBIST) tools, they can present major penalties 
to power, performance, and area (PPA) [136]. 
Recently, it has been proposed to bring the com-
putation near to the memory or into the memory, 
or using large external memory such as high band-
width memory (HBM) or wafer-bonding. These 
solutions bring in new challenges for testing. For 
instance, in-memory solutions may require under-
standing and creation of new logic and physical 
fault models [137], while wafer-bonding neces-
sitates better solutions for test access, test power 
control, and yield improvement [138].

Besides the issues mentioned above, existing 
test challenges for traditional ASIC design may also 
become increasingly intense in AI applications. For 
example, current large AI hardware accelerators 
require hierarchical DFT solutions that are scala-
ble with design size. However, since an AI hard-
ware accelerator is often a heterogeneous system, 
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hierarchical DFT needs a comprehensive solution 
for automatic DFT insertion, verification, debugging, 
and silicon bring up. Another popular difficulty stems 
from physical design, that is, large accelerators often 
use a tile-based design where no dedicated routing 
channels are reserved for global routing. However, 
complex DFT designs can create hundreds of global 
signals for scan, MBIST, debug, and so on. This pre-
sents a huge overhead for top-level implementation 
and verification. New solutions are necessary for 
both efficient DFT and easy physical implementa-
tions [136], [139].

AI hardware accelerators are also facing pressure 
from new marketing and technical trends. For exam-
ple, as one of today’s popular applications, automo-
tive-grade AI hardware accelerators require more 
stringent screening than before to ensure zero defective 
parts per million (DPPM), which has to be reflected in 
the architectural level of DFT design. Test data analysis 
and diagnosis are also critical for yield and reliability 
learning [140]. Another typical new paradigm is the 
3-D IC design, since large AI hardware accelerators are 
often limited by physical geometry and cost. Chiplet 
designs based on 2.5-D or 3-D methodologies can mit-
igate the challenges from die size, process, cost, and 
so on, but necessitate a complete set of test solutions 
from die level, stack level, to package level, which is 
being addressed in the development of new tools and 
test flows [141], [142], [143], [144].

Table 2 categorizes some of these challenges or 
issues (left) and possible solutions (right), which are 
discussed in this article. This taxonomy is not meant 
to be comprehensive, but can be representative of 
many testability activities in AI hardware designs. 
Table 2 cites only works specific to AI hardware, but 
more generic solutions will also be discussed, espe-
cially on the test architecture side, that are applica-
ble to AI hardware too.

DFT and ATPG

Test architecture
Plenty of research has been conducted on DFT 

solutions for identical cores to minimize test over-
head and maintain test quality. The assumptions of 
these techniques may still be valid for AI hardware 
accelerators, but new solutions may be needed to 
handle large AI designs with limited cost.

A straightforward idea is to broadcast the test 
stimuli to identical cores, while comparing their test 

responses for pass/fail. In [131], a test access mech-
anism (TAM) is designed to implement an on-chip 
comparison of multiple identical cores. It contains 
multiple stages of pipelines and several configura-
tions so that each core’s test can be implemented 
in different modes. As such, it not only supports 
comparing test responses from cores for manu-
facturing tests, but also provides diagnosability of 
a core during silicon bring up and yield ramp up. 
With on-chip comparison, test data volume can be 
significantly reduced and so is test time. However, 
for large AI designs with many cores, such broad-
casting-style solutions may encounter increasing 
difficulty from routing and top integration. It also 
needs some manipulations of test patterns from 
standard ATPG tools.

In [132], another form of TAM is proposed sup-
porting similar features. It is a generalized time-multi-
plexed TAM, where the compressed test and control 
data streams are serialized before going into the 
decompressor. At the core level, designers can still 
utilize the regular decompressor/compactor scan 
architecture. This simplifies the core-level scan 
channel configuration and decouples it from top-
level scan pin assignment. The designers can be flex-
ible in architecting a core-level scan scheme without 
worrying too much about the top level. This can be 
a major benefit for large AI hardware accelerator 
designs with many cores but very limited scan pin 
resources. Pattern retargeting, verification, and diag-
nosis flow are also supported, which are also critical 
for today’s large AI hardware designs.

It can be seen that to take the advantage of sea-of-
core design style in AI hardware, on-chip processing 
of test data may be preferred when implementation is 

 
Table 2. New testability challenges for AI hardware 
accelerators and possible solutions.
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feasible. There are several varieties in this domain. In 
[133], a TAM design is presented for chips with mul-
tiple isolated identical cores. The proposed pipelined 
architecture relies on forming nonlinear equations on 
a very limited number of output pins that compress 
the outputs from the identical cores and solve them 
off-chip to reproduce the failure information of each 
core. It uses test resources similar to testing a single 
core and also supports accurate failure diagnosis. 
In [178], a TAM based on a majority comparison is 
presented. It also utilizes an on-chip comparator, yet 
not to compare with an expected value but with other 
core’s test data to determine a majority value. For 
example, if more than half of the cores in the com-
parison present the same value, this value is a major-
ity value. This value is then compared with ATE data. 
The test cost is close to that of a single core.

In [179], yield improvement is considered when 
a multicore system contains spare cores. A compar-
ison-based TAM that is capable of handling multiple 
spare cores is proposed. All faulty cores can be iden-
tified via low-cost comparison, and if the spare cores 
are more than the faulty cores, the chip is still usable. 
Using spare cores is also common practice in accel-
erators with many cores. Such designs usually pro-
vide a configuration with all good cores and several 
“partial-good” configurations with different numbers 
or locations of good cores for yield improvement.

It can be seen that for such DFT solutions to be 
acceptable, several issues have to be resolved. 
First, we should be able to manipulate the patterns 
according to the scan architecture, for example, 
retargeting the core-level patterns to the top level 

without regenerating the pattern. Second, test quality 
such as coverage should not be compromised, and 
overhead should be minimized. And finally, from an 
engineering perspective, some critical metrics such 
as single-core diagnosability, verification effort, and 
routing complexity should also be considered. For-
tunately, some of these requirements are already 
supported well by current mainstream DFT tools.

Physical-aware DFT
The above works are mostly developed for tra-

ditional multicore designs. As discussed earlier, 
many AI hardware accelerator designs share certain 
features that may render these traditional solutions 
either impractical or not as efficient, especially in 
physical design. To address these AI-specific prob-
lems, some new industrial efforts are reported to 
make DFT solutions more physical-friendly and 
hence more practical.

In [136], a comprehensive set of DFT solutions tar-
geting AI hardware accelerators are proposed. In the 
scan test, this work identifies that although acceler-
ators may contain many identical cores, these cores 
are not as big or as complex as cores in a traditional 
multicore system such as a CPU. A typical acceler-
ator for data center applications may contain thou-
sands of “small” cores, as shown in Figure 13a. At this 
core level, any DFT insertion may incur a huge PPA 
penalty, that is, compression logic, wrapper logic, 
control logic, and routing for DFT signals. It is too 
small for the DFT overhead to be economical. On the 
other hand, if we group many small cores together to 
create a big partition and apply DFT insertion at this 

Figure 13. DFT solutions at different levels for many-core AI hardware accelerator 
designs. (a) Small core level. (b) Core group level. (c) Big partition level.
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level, as seen in Figure 13c, the run time, memory 
requirement, power consumption, pattern count, 
verification efforts, and other concerns may prevail 
and render it infeasible, for example, ATPG or sim-
ulation cannot finish in a limited time. Meanwhile, 
the similarities among cores cannot be effectively 
exploited.

As a result, in [136], it is proposed to find a “sweet 
spot” where a suitable number of small cores are 
viewed as a “core group,” where DFT insertion, veri-
fication, pattern generation, and other activities are 
done at this level, as shown in Figure 13b. Note that 
in practice, this usually aligns with physical design 
requirements, which is probably the most straightfor-
ward solution. However, if the physical partition is 
too big or too small, DFT can still make architectural 
changes to adapt to a suitable size of the core group. 
After this core group is determined, existing technol-
ogies such as test data broadcasting, test response 
on-chip comparison, pattern retargeting, and scan 
channel pin-muxing can be effectively applied.

Note that, in practice, the logically identical cores 
may not be physically identical. Synthesis and phys-
ical implementations may create various physical 
instances from the same logic module, converting 
a homogeneous system to a heterogeneous system 
from a physical perspective. A feasible DFT solution 
has to take this into account.

A streaming scan network (SSN) [139] is a 
recently introduced tool that can target these phys-
ical challenges. SSN is a bus-based scan data distri-
bution architecture. It contains a scan data bus that 
travels through all cores in the design, a per-core 
controller (host) with Internal Joint Test Action 
Group (IJTAG) support, and regular scan compres-
sion logic. The bus is connected to chip-level scan 
pins, and scan data for any core in the system are 
streamed in through the bus in the form of packets. 
The concept of packets is different from that in net-
work switching, since an SSN packet is a fixed-for-
mat data segment that only contains scan data, no 
address or opcode. The local host in each core is 
preconfigured through IJTAG to learn how to offload 
scan data from packets. The expected value can also 
be streamed in for on-chip comparison. The routing 
and heterogeneous problems with tile-based designs 
are also mitigated, since only a single test bus is 
routed through the entire chip. There is no need to 
pin-mux the scan channels from various cores to top-
level scan pins, and the test bus interface is identical 

for all cores. Another benefit is that due to the flexi-
bility of packeted test data, any cores can be tested at 
any time. This can help effectively control test power 
and improve test channel throughput. With compre-
hensive considerations of DFT and physical-design 
requirements, this solution is especially suitable for 
AI hardware containing many identical cores.

Function-aware DFT
Most of the aforementioned technologies are 

common DFT solutions without an in-depth analysis 
of the function mode of hardware. Many AI hard-
ware accelerator architectures are domain-specific 
or even application-specific, hence a customized 
DFT solution designed for a specific AI architecture 
is intuitively best for PPA results. To serve this pur-
pose, a DFT architect needs to understand how AI 
hardware works in a function mode such that the 
DFT design can be optimized accordingly.

Motaman et al. [135] realize that due to the 
unique architecture of AI hardware, traditional 
stuck-at and delay tests may not be sufficient. They 
study test methodologies and DFT requirements spe-
cifically for supervised ML systems. The hardware 
architecture of FIFO-based and scratchpad-based 
accelerators is analyzed. Test strategies for specific 
hardware components such as MAC, global buffer, 
activation functions, and so on are developed. These 
solutions are more function-like and can help bridge 
the gap between traditional test patterns and specific 
AI hardware test requirements. They are also easy for 
online tests to ensure product quality.

In [145], postmanufacturing testing of DNN accel-
erators is discussed. It is argued that the inherent error 
tolerance can be leveraged to reduce the fault model 
size and, thereby, the test time and cost. The idea 
is that if a fault does not lead to inference accuracy 
degradation for a given accuracy tolerance margin, 
then it is noncritical and can be dropped. Only crit-
ical faults will be targeted during the test application. 
Two approaches are shown considering a gate-level 
implementation. The first approach is Boolean satis-
fiability (SAT)-based structural testing where a SAT 
solver exhaustively checks all input combinations to 
determine the fault criticality and generates a test pat-
tern able to detect it. The second approach is classi-
cal functional testing where the actual workloads, for 
example, images, are used as test inputs.

Function mode operation is also studied in [134] 
to improve test quality in accelerators with very large 



26 IEEE Design&Test

Testability and Dependability of Artificial Intelligence Hardware

number of small cores. As suggested in [136], this 
scenario can be handled by grouping small cores 
into a core with a size suitable for both DFT and 
physical implementations. However, it does not 
exploit the similarity among small cores and test 
quality may still be impacted if there are interactions 
between small cores. In typical AI hardware accel-
erators, there is heavy data traffic between adjacent 
cores, hence the test coverage on core boundaries 
is essential. The work in [134] studies intercore 
connectivity, function dataflow, and design homo-
geneity to derive a C-testable method that can run 
ATPG for only a single core to reduce test cost and 
maintain coverage and diagnosability. By exploring 
design space, it also presents a hierarchical compac-
tion scheme for on-chip response compaction under 
reasonable design constraints.

Figure 14 shows a systolic array example consist-
ing of 16 small cores (or PEs). Dataflow is only from 
left to right and from top to bottom. Each PE has reg-
isters on the input sides but not on the output side. 
If ATPG is performed at each PE level, coverage will 
be unacceptable since PE itself is not well wrapped 
by registers. However, if the ATPG run consists of 
the five adjacent PEs inside the red line, faults in the 
green PE in the middle will be fully covered. Note 
that this ATPG pattern can be used to detect faults in 
all PEs in the same scenario. Since an architecture 
with small PEs usually contains a large number of 
them, the overhead of such a scheme is low.

Figure 15 illustrates the sequence of testing the 
whole systolic array. ATPG consisting of five neigh-
boring PEs is repeatedly used to detect faults in the 
dark green PEs with high coverage. Each iteration 
will cover a different set of PEs. Light green PEs are 
those already covered by previous runs. As a result, 
for a large systolic array (e.g., 256 × 256), most PEs 
can be covered by small ATPG patterns in four test 
runs. The uncovered PEs on the borders can be fully 
tested in a top-off run.

Functional test generation
Functional test generation aims at generating 

inputs, for example, images, that are capable of 
sensitizing the fault and propagating its effect to 
the output, leading to a different prediction with 
respect to that of the nominal fault-free network. 
This approach has been demonstrated for ANNs 
[127], [146], [147], [148], [149], including memris-
tive crossbar array-based architectures [146], [147], 

[149], and for SNNs [150], [151]. As shown in Fig-
ure 16, functional tests could be original images 
from training and testing sets, adversarial examples 
generated from original images, or synthetic images 
generated from original images.

More specifically, starting from the available set 
of input samples, one approach is to select samples 
that are profoundly similar to other samples belong-
ing to different output classes, for instance a similar-
ity metric could be average pixel intensity [127]. A 
second approach is to select samples that have been 

Figure 14. Example of a 2-D unidirectional 
pipelined dataflow in 4 × 4 PE-based 
systolic array [134].

Figure 15. Testing 5 × 5 PE-based systolic 
array in a checkboard style [134].
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predicted correctly but with the least confidence 
score [127], [151]. A third approach is to select sam-
ples that require more neural network parameter tun-
ing effort during training, where the effort is measured 
with the change in the loss function in each training 
step [149]. In [146] and [150], it is proposed to gen-
erate adversarial input samples, that is, perturb avail-
able input samples by adding a minimum amount of 
noise aiming at forcing the predictions of the nomi-
nal and faulty network to differ. Another strategy is to 
craft new samples by attaching watermarks to availa-
ble input samples [147]. The network is deliberately 
trained to output a designated classification label for 
a watermarked input, a technique that is called back-
dooring. Using the watermarked inputs as a valida-
tion set, a low validation accuracy indicates a fault. 
In general, in all aforementioned works, the objec-
tive is to use samples that are more vulnerable to mis-
classification when faults occur. Finally, in [148], a 
method is proposed for querying a network with a set 
of specially crafted test inputs, to reveal if the model 
parameters stored in the memory are faulty.

Functional tests can also be employed by the user 
of the programmed AI hardware accelerator to vali-
date that the embedded DNN model has not under-
gone any malicious perturbations [152].

A related research direction is generating error-in-
ducing corner test cases for a trained DNN, which 
thereafter can be used to retrain the DNN and 
improve its accuracy [153], [154]. These corner test 
cases are synthetic real-world input images resulting 
from realistic transformations of seed images and 
generated in a way such that they activate a large 
percentage of neurons in the DNN. For example, for 
DNN models controlling the perception of autono-
mous cars, these transformations include changing 
brightness, changing contrast, shearing, rotation, 
blurring, fog effect, rain effect, and so on.

In [155], an alternative functional test generation 
is proposed, demonstrated for memristive cross-
bar-array architectures targeting detection of classifi-
cation accuracy drop due to process variability. This 
approach is inspired by the alternate analog circuit 
testing paradigm [180], [181]. First, a compact test 
set of input images is generated with the maximum 
possible diversity of responses, and a feature vector is 
defined at the output of the network. An outlier detec-
tor in the form of a one-class classifier is trained in 
the space of features using as training set instances of 
the DNN with process variations but with acceptable 

accuracy. Applying the compact test set, the outlier 
detector serves as the first screening of nonconform-
ing devices. Devices that pass this test are presented 
to a regressor that is trained using the same training 
set to map the features to the DNN classification accu-
racy. A guard-band is defined around the minimum 
tolerated accuracy to classify devices as passing, fail-
ing, or fuzzy, where the fuzzy devices fall within the 
guard-band and are subject to standard testing using 
the complete image set to obtain a precise decision. 
Failing and fuzzy devices found in production testing 
can be combined in batches with prior training data 
to retrain the outlier detector and regressor.

In [156], a functional BIST scheme is proposed 
for biologically inspired spiking neurons. The idea is 
to test that the neuron is capable of producing all the 
basic firing patterns, that is, regular spiking (RS), fast 
spiking (FS), intrinsic bursting (IB), and chattering 
(CH). The test stimulus is composed of low-resolu-
tion ramps applied at the bias nodes of the neuron 
such that in one pass, all firing patterns appear. If one 
or more firing patterns are missing, then the neuron 
is declared to be faulty. Examples of functional and 
faulty neuron responses are illustrated in Figure 17.

Online test

ATPG and functional testing
Many AI accelerators are used in datacenter 

applications, where reliability, availability, and 

Figure 16. Functional test generation. The street 
images are from [154]. The chip image is from [60].
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serviceability requirements demand a certain level 
of online test of memories and logic. However, such 
tests involve both function mode and test mode, 
imposing more difficulties on DFT designs.

A recent effort is reported by Amazon AWS in 
[157], where high-speed serdes I/Os in an AI hard-
ware accelerator are used to transport scan test pat-
terns to test the processing cores. Test patterns are 
converted to a format compliant with the correspond-
ing protocol and transported from peripheral compo-
nent interconnect express (PCIe)/universal serial bus 
(USB), through standard advanced extensible inter-
face (AXI) fabric, to cores. Cores under test will be 
idled from workload and isolated from the rest of the 
logic. Although the major advantage of this solution is 
test time reduction, it supports native online test capa-
bility, which is critical in a cloud scenario. 

Returning to the functional test generation meth-
ods in [127], [146], [147], [148], [149], [150], and 
[151] discussed in the previous section, as the result-
ant functional test set is compact, it can also be 
fed periodically during mission mode in idle times 
toward functional safety (FuSa).

In [158], different self-test approaches are pro-
posed for the compute units and control units of 
an accelerator. For compute units that do not con-
tain complex sequential logic, test patterns based 
on combinational ATPG are generated. For the 
control units that contain finite-state machines and 
sequential logic, it is proposed to use functional tests 
in the form of executing DNN layers with carefully 
crafted input and weight values. The methodology is 

enhanced in [159] to cover both stuck-at and delay 
fault models for both unit types.

Checksums and error codes
The idea here is to build invariants into the accel-

erator that hold true only in fault-free operations 
while they are violated in the presence of faults. 
Thus, checking them concurrently with the oper-
ation can point to abnormal operations. Invariants 
can be built using checksums or error codes.

In [160], a sanity-check mechanism is proposed, 
in which error detection checksums are constructed 
by utilizing the linearity property of DNN MAC opera-
tions. These linear algorithmic checksums are added 
to the convolutional layers and FC layers of DNN 
models after the training. A hardware-based solu-
tion is proposed for integration into DNN inference 
accelerators aiming at reducing the performance 
overhead at the cost of a minor area and power 
overhead.

In [161], additional penalty terms, called a bal-
anced checksum, are introduced into DNN train-
ing. The balance checksum aims at forcing the 
DNN layer outputs to adhere to a linear invariant. 
By adding the balanced checksum into the cost 
function, error-checking invariants are embedded 
in DNN model computations. These invariants 
provide the computation error detection capa-
bility during the DNN inference phase, assuming 
the error would lead to the violation of the trained 
equilibrium. Furthermore, the introduced custom 
regularization terms even help a better generaliza-
tion during the training.

In [162], several algorithm-based error detection 
(ABED) techniques are presented focusing on the 
verification of convolution operation, one of the 
most resource-demanding operations in CNNs. Three 
variants of ABED are presented to use checksums for 
filters only, input feature maps only, or both filter 
and input feature maps. Implementation complex-
ity, runtime overhead, resilience, and performance 
tradeoffs are studied and compared for the three 
ABED techniques. This work also addresses the over-
flow challenges of the checksum arithmetic induced 
by reduced-precision fixed-point operations (e.g., 
8-bit integers). Resilience improvements are evalu-
ated using analytical models, error injection experi-
ments, as well as accelerated radiation experiments.

In [163], an AN code-based fault detection mech-
anism is proposed to protect the MAC units of the 

Figure 17. Functional testing of a biologically inspired 
spiking neuron.
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DNN accelerator. AN codes add redundancy in the 
data to detect faults during arithmetic operations.

In the case where the weights of the DNN model 
are loaded encrypted in the memory, an online test 
scheme is proposed in [164] that employs the pad-
ding bits. Padding is used to add a number of bytes 
to the plaintext to reach a multiple of 16 bytes (i.e., 
128 bits) since the encryption is performed on 128-
bit blocks. According to the most popular standard, 
if n bytes are added to pad the plaintext, then each of 
the bytes will encode the value n. If a bit-flip occurs, 
the on-chip decryption module will spread it creat-
ing multiple bit-flips affecting also the padding bits. 
The fault detection scheme is then to check that the 
decrypted padding bytes indeed encode the value n. 
Using this approach, most single faults become crit-
ical, but they become detectable at the same time.

Software based
In [165], online test strategies based on Software 

Test Libraries (STLs) are proposed for embedded sys-
tems running ANN applications. STL is composed of 
selftest routines that are executed during boot-time 
or run-time. The strategies are categorized into two 
groups according to whether they incur or not a small 
penalty in the inference time. Zero-penalty strategies 
include: 1) run part of the STL during weight data 
transfer when the PEs are idle and 2) test the inactive 
PEs of a low-intensive computation layer and cover 
all PEs in subsequent inferences using a scheduler 
based on a round-robin algorithm. Small-penalty strat-
egies include: 1) one PE is executing a self-test while 
the rest of the PEs share the AI workload; 2) apply the 
entire STL between two consecutive inferences; and 
3) arrange and apply the entire STL between succes-
sive layer computations when weight data transfer 
is happening. The strategies are evaluated on CNNs 
running on an open-source RISC-V platform. First, 
STL is verified to have high stuck-at test coverage. 
Then, the different strategies are evaluated based on 
the inference time penalty and fault detection time 
(FDT) tradeoff, where FDT is the worst-case time to 
detect a fault from the moment of occurrence.

Memristor crossbar arrays
An online concurrent fault detection method for 

memristor crossbar arrays is proposed in [166]. The 
underlying observation is that faults affect dynamic 
power consumption. An indirect simplified meas-
ure of the dynamic power consumption is used, in 

particular, the number of logic “1s” at the outputs of 
the ADCs digitizing the output current of the cross-
bar’s columns. An adder-tree design is used to count 
the number of “1s,” which incurs a small area over-
head. The time series corresponding to the power 
consumption and count of “1s” show a strong cor-
relation when faults are present, which allows using 
the count of “1s” as a simplified metric. When abrupt 
changes occur in the time-series data, the presence 
of faults is indicated. Changepoints are detected by 
examining time series within a sliding window. For 
a current time point, the sliding window is centered 
on it. The probability density functions of the points 
in the left- and right-hand segments are estimated 
and compared to examine if the current time point 
is a changepoint. When a changepoint is detected, 
the percentage of faulty cells in the crossbar is esti-
mated. A regression model is trained for this purpose 
offline. A variety of independent feature variables 
are used, including statistics of the time-series data, 
average weight stored in the crossbar, and average 
input applied to the crossbar’s input. Error correc-
tion is invoked when a high percentage of faults is 
estimated. For example, the faulty crossbar can be 
replaced with a redundant crossbar. 

Yield improvement
In [167], the yield and accuracy-aware optimum 

test of AI accelerators (YAOTAs) framework is pro-
posed. The framework deals with stuck-at faults in 
MAC units of AI accelerators and considers output 
bit position K up to which the inference error is 
acceptable. Faults in the fan-in logic cones of bit 
positions lower than K are considered noncritical, 
while fan-in logic cones of bit positions higher than 
K are considered critical. ATPG test patterns are 
applied and if only noncritical faults are found in 
the MAC, then the PE may be acceptable depend-
ing on how many such faults exist, the AI workload, 
and the error tolerance limits demanded by the 
application. If critical faults are found, then the PE 
is permanently disabled. The map of faulty PE loca-
tions is programed in a fault status register. For sin-
gle instruction, multiple data (SMID) architectures 
where PEs are interconnected with NoC/mesh, PEs 
can be individually switched off and bypassed. For 
systolic array-based accelerators, a deactivation pro-
tocol is proposed without hardware-level modifica-
tions. In particular, it is proposed to deactivate the 
PE columns that contain PEs with critical faults and 
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shift input data by inserting dummy rows of zeros. 
This approach has no area overhead but decreases 
the execution throughput. By adopting this frame-
work, the manufacturer can avoid discarding the full 
accelerator chip because of the presence of a few 
faulty PEs, thereby increasing yield.

In [115], two methods are proposed to recover the 
fabrication yield loss of memristor crossbar-based 
accelerators due to high memristor defect rates. The 
first method consists of identifying memristors that 
are stuck at certain conductance levels and perform-
ing retraining of the network where only defect-free 
memristors are adjustable. In the case where the 
performance loss cannot be fully compensated by 
retraining, the second method presents a remapping 
algorithm where memristor columns that are heavily 
polluted, that is, contain many defective memristors, 
are replaced by additional redundant columns.

In [168], spatial redundancy-based fault-tolerant 
schemes are proposed for yield loss recovery of mem-
ristor crossbars. The fault model considers stuck-at 
fault in memristor cells, that is, a memristor cell can 
be stuck-at a high resistance state or low resistance 
state. The fault-tolerant schemes apply to designs 
where the dot-product operation is mapped to two 
memristor crossbars. In particular, once the model 
is trained, the mapping allocates the positive weights 
to a “positive” crossbar and the negative weights to 
a “negative” crossbar. The proposed fault-tolerant 
mapping algorithm is to make the positive and neg-
ative weights eliminate the impact of faults on each 
other. For example, if a positive cell is stuck-at, the 
weight of the negative cell is enlarged accordingly to 
approximate the target weight. This approach works 
if only one of two cells in the same location in the 
two crossbars is faulty at a time. Spatial redundancy 
schemes are proposed in the case where the fault 
rate is high, where the same concept of pairwise 
fault elimination is used. These schemes make use 
of redundant crossbars, crossbar columns, and cells.

In [169], methods are proposed for improving the 
yield of memristor crossbars in the presence of mem-
ristor resistance variations and stuck-at faults. It is 
assumed that the resistance variations and the loca-
tion of stuck-at cells can be detected. Two different 
methods are proposed in the case of multilayer per-
ceptions (MLPs) and CNNs. For MLPs, the problem 
of mapping the weight matrix of the trained model 
to the conductance matrix of the crossbar is formu-
lated as a bipartite matching problem. The metric 

used is the summed weighted variations across the 
cells. Then, in a second step, the derived new weight 
matrix is fed as a starting solution to an off-device 
training algorithm. The algorithm aims at iteratively 
reducing the weight with the maximal deviation. This 
is done by scaling down the weight in each training 
epoch and adapting the weights of the surround-
ing cells to recover the classification accuracy. For 
CNNs, the method exploits the fact that two memris-
tor crossbars are used to represent positive and nega-
tive weights since the conductance of a cell can only 
be positive. The weight is expressed as the difference 
between the two conductances. Therefore, there is 
a bitwise redundancy in the architecture. The pro-
posed method is to reprogram the resistance of one 
cell of the pair to eliminate the resistance variation in 
each cell. The same principle is used as a self-com-
pensating mechanism to tolerate stuck-at faults. In 
the second step, off-device training and on-device 
training with few iterations so as to consider the lim-
ited endurance of the memristors can be performed 
to improve the classification accuracy.

A common technique to improve the error-re-
silience of DNN accelerators is to extract the mem-
ory fault map using postmanufacturing testing and 
perform fault-aware retraining of the model. Doing 
so for each faulty chip results in significant retrain-
ing overhead. In [170], it is proposed to train many 
faulty chips at a time. The fault maps of chips are 
merged into a unified fault map, which is then used 
for retraining a single model that will be loaded to 
every chip. A fault map is abstracted as a 2-D table 
where an element corresponds to a memory cell. The 
state of the cell is encoded to 1 or 0 for an S-A-1 or 
S-A-0 fault, respectively. For contradictory locations 
where S-A-1 of one fault map overlaps with S-A-0 of 
another fault map, the policy is to select the polarity 
that incurs less accuracy drop in the DNN inference. 
The retraining speedup increases with the number of 
fault maps merged. However, this speedup is at the 
expense of an accuracy drop compared to per-chip 
retraining. Empirically, it was observed that expos-
ing the DNN gradually to faults rather than exposing 
it to all faults from the very start allows the DNN to 
learn at a faster rate and achieve better accuracy.

Fault modeling and testing of memristor-based 
memory technology

Memristors offer a compelling solution to the 
scalability problem of AI hardware accelerators, as 
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they can be used as nanoscale synapses. They offer 
also a promising in-memory computing architecture 
that solves the data transfer bottleneck as discussed 
in a previous section. Besides these applications in 
an AI hardware context, memristor-based memory 
technology has a large potential for replacing tra-
ditional memory technologies and is the focus of 
today’s research. As memristors are susceptible to 
process, voltage, and temperature (PVT) variations 
and manufacturing defects because they are fabri-
cated with new materials and processes, there is a 
large body of work that aims at understanding such 
failure mechanisms and accurately model them to 
develop optimal postmanufacturing memory tests, 
including march test algorithms and DFT [171], 
[172], [173], [174], [175], [176], [177], [178]. These 
works find applicability in the context of AI hard-
ware accelerators implemented with memristive 
crossbar arrays.

Dependability

Introduction
AI hardware is generally integrated into some 

intelligent or autonomous systems required to oper-
ate throughout their life cycle in a highly dependa-
ble manner. The dependability issues of AI hardware 
have aroused great interest in recent years. Depend-
ability is a broad term used to define the ability of 
a system to deliver its intended service [183]. Any 
system, including AI hardware, can be viewed as 
a group of components integrated into one single 
entity to serve the purpose of delivering a certain 
service (e.g., AI algorithm acceleration for an AI 
accelerator). Throughout the life cycle of system 
deployment, there may be a service failure trig-
gered by intrinsic or extrinsic effects, whereby the 
delivered service deviates from the intended one. 
The dependability of a system is the ability to avoid 
such service failures that are beyond the acceptance 
level.

Dependability encompasses a broad spectrum of 
attributes, which are quantities to measure dependa-
bility from various perspectives. The main attributes 
include reliability, availability, maintainability, and 
safety [183], [184].

•	 Reliability, availability, and maintainability are 
three highly related attributes, which are usu-
ally measured by statistical metrics. Reliability 

denotes the continuity of the correct service. The 
level of reliability is commonly specified in terms 
of mean time to failure (MTTF) [184]. Maintaina-
bility denotes the ability to repair when a service 
failure has occurred. It can also be specified as 
a statistical term with the mean time to repair 
(MTTR) metric which represents the expected 
system down time (including repair time) [184]. 
Lastly, availability denotes readiness for correct 
service. It can be expressed as a function of MTTF 
and MTTR as A = MTTF/[(MTTF+MTTR)] [184].

•	 Safety denotes the ability of a system to not cause 
harm to people, things, or the environment. 
Safety includes FuSa and safety of the intended 
functionality (SOTIF). FuSa is defined as the 
absence of unreasonable risk due to hazards 
caused by malfunctions [185], [186], [187]. On 
the other hand, SOTIF focuses on the absence of 
risks caused by performance limitations of the 
intended behaviors or by reasonably foreseeable 
misuse by the user [188].

We note that security is often not characterized 
as a single attribute of dependability. While highly 
related to dependability, security is considered a 
composite notion combining confidentiality, availa-
bility, and integrity attributes [184].

From a dependability perspective, there are var-
ious threats leading to a potential violation of the 
targeted goal. A threat at the component operation 
layer is usually called a fault. There are two main cat-
egories of faults: intrinsic faults and extrinsic ones. 
The former may be originated from aging effects, 
device variability, latent manufacturing defects, and 
susceptibility to environmental conditions (e.g., 
radiation causing soft errors, electrical/mechanical 
stress). On the other hand, there are some faults 
caused by system inputs (e.g., malicious inputs to AI 
systems, or user misuse), which are said to be extrin-
sic or external.

There are a variety of techniques to improve the 
dependability of a system, including fault prevention, 
removal, tolerance, and prediction. Fault tolerance 
is one of the most popular means aiming at tolerat-
ing a fault in a functional system. There are different 
levels of fault tolerance requirements, for example, 
fail-operational, fail-safe, and so on. A fail-opera-
tional system upholds the continued functionality 
and intended services in the presence of a fault. 
There are two main subcategories: 1)  upholding 
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service without performance degradation and 2) 
with degraded performance. The latter is commonly 
referred to as fail-degraded or fail-reduced. A fail-
safe system aims at transitioning the system to a 
well-defined condition to maintain a safe state in the 
event of faults. The FuSa mechanism is one example 
of means to achieve a fail-safe property. Note that 
there is another term “fail-silent,” which is described 
as the guarantee of no service (e.g., no system out-
put) in the event of failures. Such a silent state can 
be viewed as a specific defined safe state, thus from 
this perspective, fail-silent can be considered as a 
subcategory of fail-safe.

As AI hardware provides service to more and 
more mission-critical or safety-critical applications, 
these hardware elements need to be evaluated 
for compliance with the dependability goal (e.g., 
safety). In general, they share the same dependa-
bility theory foundation and requirements as other 
hardware (e.g., traditional general-purpose proces-
sors). However, there are several novel dependabil-
ity challenges as well as opportunities introduced 
by unique characteristics of AI hardware comput-
ing architecture, application, and also research and 
development cultures.

First, AI hardware goes under a new comput-
ing paradigm called “domain-specific computing” 
[189]. Domain-specific computer architecture with 
domain-specific hardware acceleration has been 
introduced in recent years to address performance 
needs that general-purpose computing is hard to 
meet. This emerging computing paradigm shift is 
expected to bring new opportunities to AI hardware 
dependability method development. For example, 
while many traditional application (domain)-agnostic 
fault tolerance techniques, for example, ECC or TMR, 
are commonly used in general-purpose computing, 
an alternative technique with exploiting domain-spe-
cific characteristics of AI hardware could be pursued 
to achieve better efficiency in terms of PPA.

As discussed before, many research works sug-
gest that DNNs have inherent resilience to moder-
ate variations of parameters and activations. Such 
approximate nature of DNNs enables the devel-
opment of approximate computing to support 
efficient AI learning in resource-constrained hard-
ware, especially for inference. However, the actual 
impact of AI hardware faults could be more severe 
on AI application service results, for example, clas-
sification accuracy. It demands thorough hardware 

fault analysis and novel lightweight fault-tolerant 
techniques exploiting the architectural properties 
of AI hardware.

We also note that some research suggests 
deep-learning models may have an inherent weak-
ness against input perturbation, for example, adver-
sarial examples. The adversarial robustness of DNNs 
has received particular attention, and there is a 
rapidly growing body of research work in this field 
[190], [191]. Such adversarial inputs can be viewed 
as external/extrinsic faults. In this survey article, we 
focus on dependability against intrinsic faults, that 
is, those induced by AI hardware internally while 
potentially stressed by environmental effects or 
workloads. Other security threats that will not be 
covered in this survey include DNN model IP theft 
[192], [193], [194], backdoor attacks on DNNs per-
formed when training is outsourced [195], [196], 
and fault injection attacks [197], [198].

Another characteristic of AI hardware is that it is 
often an integral part of some AI-based solutions con-
sisting of multiple interacting system layers—from 
hardware/physical to software/application. From 
this perspective, AI hardware dependability strate-
gies should use a system-based approach beyond the 
techniques limited to local hardware. The concept 
of cross-layer dependability or cross-layer resilience 
[199], which leverages the inherent fault-tolerance 
of multiple layers, should be used for AI hardware 
to exploit domain-specific faults at the system level. 
Moreover, heterogeneous computing containing AI 
accelerators along with general-purpose CPUs and/
or FPGAs has gained mainstream adoption in the 
computing industry [200]. There exist far greater 
opportunities for exploiting heterogeneity to achieve 
system-level dependability.

Deep-learning-based AI has become a revolu-
tionary tool in many industry fields, with seemingly 
unlimited potential to outclass traditional tech-
niques. This is a burgeoning field filled with oppor-
tunities as well as chaos, much like the new kind of 
“Wild West.” We see that industry and academia are 
eager to push out AI innovations, with new architec-
tures and higher performance expressed mainly with 
the tera operations per second (TOPS) metric, so as 
to battle for technical leadership in this rapidly grow-
ing field. In general, the AI field is permeated by a 
pioneering and risk-taking spirit. On the other hand, 
conservatism is fundamental in the dependability 
field (especially for safety). It is in sharp contrast 
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with the pioneering spirit and self-regulation philos-
ophy. A paradigm shift is needed to bridge the gap 
between them. Over the past few years, there have 
been growing efforts in this direction. For example, 
Europe has started legislation to make the use of 
AI safer and more ethical, such as in critical infra-
structure impacting people’s lives and health [201]. 
Still there is a considerable gap between the AI 
dependability goal and the available solutions. This 
is a research frontier where the technical community 
can contribute more to bridge the gap by introduc-
ing new methods.

Design-for-dependability aims at enhancing the 
reliability, availability, maintainability, and safety 
features of the AI hardware accelerator. All these 
attributes boil down to rendering the AI hardware 
accelerator error-resilient. We classify the existing 
design-for-dependability approaches into four cate-
gories, as illustrated in Figure 18. The first category 
includes model-based approaches where the goal is 
to derive a model that meets the performance require-
ments and additionally it has intrinsically built-in or 
programmed error-resilient capabilities such that by 
construction when mapped onto hardware, it is capa-
ble of tolerating certain hardware-level faults. The 
second category includes proactive hardware-based 
techniques where the goal is to make the accelera-
tor design passively tolerate certain hardware-level 
faults. The third category includes reactive hard-
ware-based techniques where the goal is to make the 
accelerator react to an occurring fault in realtime, 
including built-in monitoring of fault occurrence 
and low-latency error recovery whenever a fault has 
occurred. The final fourth category includes cross-
layer approaches where the error tolerance objective 
is shared between the model and hardware.

A taxonomy of existing techniques under the dif-
ferent categories is provided in Table 3. These tech-
niques will be presented in more detail next.

Model-based approaches
Figure 19 combines and illustrates model-based 

approaches that will be discussed next in detail.

Model training modification
A number of works propose to achieve fault toler-

ance by modifying training. The first method is to add 
artificial faults and noise into the network during train-
ing such that the network learns to tolerate faults [61], 
[202], [203]. A second method is to restrict weights 

to have low values since intuitively fault-tolerance 
degrades by the use of large values [202]. A third 
method is to add a penalty term to the training cost 
function that takes into account errors that arise due 
to faults and multiply the penalty with a regulariza-
tion parameter that controls the tradeoff between 
the degree of fault tolerance and inference accuracy. 
The underlying idea is to bias the solution toward a 
fault-tolerant network. Approaches in this category 
include constraining the weights to lie within a lim-
ited range toward an even weight distribution [204], 
[205], [206]. A fourth method is to combine the train-
ing process and fault-tolerance objective into an opti-
mization problem solved by nonlinear optimization 
algorithms with the aim to learn a network model that 
performs the desired task and at the same time fulfills 
fault-tolerance constraints [207], [208], [209], [210]. 
A fifth method proposed in [211] considers construc-
tive training in the presence of faults, where neurons 
are incrementally added whenever the network fails 
to learn until a satisfactory learning or a user-defined 
maximum network size is reached. 

The aforementioned approaches are early works 
targeting shallow FC networks and considering faults 
at the behavioral level. They laid the foundation of 
several approaches for modern AI hardware acceler-
ators presented recently which are discussed next. A 
thorough and comprehensive review of these early 
approaches is provided in [212].

Fault-aware training
In [213] and [91], it is demonstrated for ANNs 

and SNNs, respectively, that training with drop-
out improves error resilience. Dropout was origi-
nally proposed in [276] to prevent overfitting and 
reduce the generalization error on unseen data. 
The idea is to temporarily remove neurons during 

Figure 18. Design-for-dependability 
approaches.
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training with some probability p, along with their 
incoming and outgoing connections. At test time, 
the final outgoing synapse weights of a neuron 
are multiplied by p. For a network with n neurons, 
there are 2n “thinned” scaled-down networks, and 

training with dropout combines exponentially 
many thinned network models. The motivation is 
that model combination nearly always improves 
performance, and dropout achieves this efficiently 
in one training session. The reason why dropout 
is a natural fault-aware training approach is that it 
equalizes the importance of neurons across the net-
work, resulting in more uniform and sparse activity 
across the network. Therefore, if a neuron becomes 
faulty, this turns out to have no effect on the overall 
inference accuracy. In [91], it is demonstrated that 
training the SNN with dropout can nullify the effect 
of dead neuron faults and neuron timing variations 
in all hidden layers, while the SNN can withstand 
a multiple-fault scenario with high dead neuron 
rates. A technique equivalent to dropout, called 
erasure regularization, is to set neuron activations 
and weights to zero during training [214].

In [215], an error injection layer is developed that 
allows injecting faults according to a fault model dur-
ing training time. The FINN FPGA-based QNN accel-
erator for CNNs [56] is adopted for the study. The 
focus is on two main fault types for CNNs, namely 
single-channel stuck-at faults and the same pixel in 
all channels stuck-at. Training is performed on a GPU 
and fault injection on FPGA. Results show that this 
fault-aware training approach: 1) improves the error-
free accuracy by behaving like a regularizer; 2) leads 
to highly fault-tolerant networks with accuracy very 
close to the error-free one; and 3) offers an improved 
hardware cost versus worst-case accuracy tradeoff 
when selective TMR is used to compensate errors in 
the most critical layers.

Another fault-aware training approach is to inject 
bit errors in the weights during the training process. 
This strategy has been investigated in [214], [216], 

Figure 19. Model-based approaches.

 
Table 3. Taxonomy of design-for-dependability approaches.
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and [217] showing that it allows a margin for volt-
age reduction in the memory of the DNN accelera-
tor, thereby helping to reduce energy consumption. 
In other words, the accuracy drop due to bit errors 
resulting from voltage under-scaling can be compen-
sated by this fault-aware training approach.

Training with noise
In [218], [219], and [220], it is shown for mem-

ristor crossbar-based architectures that injecting 
noise during software training enhances the robust-
ness of inference to the nonideal effects of memris-
tor crossbars. In [218], a Gaussian noise source is 
incorporated at the crossbar outputs, while in [219] 
and [220], a random noise term is injected into the 
weights during training.

Co-optimizing inference accuracy and fault 
tolerance

Techniques to unify inference accuracy maximi-
zation and fault-tolerant improvement optimization 
are proposed in [90], [221], and [222]. In [90], a 
variant of an evolutionary optimization-based train-
ing algorithm for SNNs is proposed where the fit-
ness function is redesigned aiming at improving the 
error-resilience capability. In particular, the fitness 
function becomes a weighted sum of the baseline 
accuracy and the average accuracy obtained on a 
faulty version of the network when imposing a cer-
tain synapse fault rate. In [221], process variations 
and noise are modeled as random variables and are 
incorporated into the weights of the neural network 
during training. In [222], a framework is presented 
that utilizes a Bayesian neural network to conduct 
variation- and defect-aware training. The approaches 
in [221] and [222] are demonstrated for memristor 
crossbar-based architectures.

Restricting numerical ranges
The range of parameters inside each layer of 

a DNN can vary a lot. This can be a major source 
of vulnerability to bit errors in DNNs. For example, 
considering a conventional fixed-point data format, 
the variation in the first few MSBs can be very detri-
mental to small parameter values. In [219], it is pro-
posed to use the dynamical fixed-point (DFP) data 
representation formation that allows to adaptively 
change the location of the decimal point based on 
the range of data. In particular, by left shifting the 
decimal point position, we can make sure that there 

are no unused MSBs. In [223], to reduce the vulner-
ability surface, layer-wise quantization techniques 
are proposed to tighten the quantization margins to 
match the utilized range in each DNN layer. Also, a 
new regularization method, called outlier regulari-
zation, is introduced in the training phase to further 
tighten the numerical range and shape the parame-
ter distributions.

Model modification
In [229], it is proposed to augment the trained net-

work by replicating critical neurons and their asso-
ciated connections. A neuron and its replica have 
half the weights of the original neuron to maintain 
the network mapping. The underlying idea is that if a 
critical neuron fails, then the effect on the inference 
will be lower, thanks to spatial redundancy.

In [230], it is proposed to prune unimportant 
nodes in the network according to a sensitivity anal-
ysis and then retrain the pruned network. Redundant 
nodes are also introduced so as to share the task of 
critical nodes.

In [231], a method is proposed to enhance the 
error resilience of DNNs by modifying just the output 
layer that performs the binary classification. Typi-
cally, an ensemble of independent logistic classifiers 
is used, each implementing a winner-takes-all rule 
by one-hot encoding. Error-correcting output code 
(ECOC) learning is applied to optimize the cod-
ing matrix and increase the Hamming distance of 
codewords assigned to different classes. This work 
proposes a collaborative logistic classifier extended 
from the logistic classifier to ease neuron competi-
tion and improve the error capacity. Increasing the 
decision distance on final classification is shown to 
rectify the accuracy degradation induced by faults 
across the complete architecture. The method is 
cost-effective, scales to any network size, and can 
be easily integrated with existing hardware-level 
fault-tolerant techniques.

Fault-tolerant model search
In [234], a neural architecture search (NAS) 

algorithm, such as the one proposed in [277], is 
employed to discover a fault-tolerant architecture. 
The employed NAS algorithm uses reinforcement 
learning rewarding architectures toward maximiz-
ing performance. In this work, the NAS algorithm 
is modified to add a second term in the reward 
that expresses fault tolerance to bit flips (FT-NAS). 
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Another version of the algorithm computes the first 
term of the reward, that is, the classification accu-
racy, by inducing faults during training (FTT-NAS). 
The hand-designed networks show performance 
degradation already with a very small bit-flip rate. 
Instead, the network found by FT-NAS shows a 
graceful degradation with an increasing error rate, 
whereas the network found by FTT-NAS achieves 
near baseline accuracy for a high error rate. The 
discovered fault-tolerant architectures are inspected 
and they are found to establish double connections 
between some pairs of nodes. In other words, sensi-
tive connections are identified by the algorithm and 
redundant paths are added for defending against 
faults.

Proactive hardware-based approaches
Traditional fault-tolerant methods continue to 

play critical roles in AI hardware. For example, ECC 
is used to protect the memories of AI hardware accel-
erators [81], [83], [84], [264]. The Razor technique 
[278], aiming at detecting and correcting circuit tim-
ing errors, is also used in some AI hardware accel-
erator designs [257], [267], [268]. Besides these 

standard domain-agnostic fault-tolerant techniques, 
there are other different proactive hardware-based 
approaches for AI hardware, illustrated in Figure 20, 
that will be described in more detail in this section.

Memory cell redesign
In [224], a passive fault-tolerant method for 

ReRAM-based crossbars is proposed by redesign-
ing the memory cell to have a 2-transistor/2-resistor 
(2T2R) structure, where each bit of information 
is stored in a differential fashion. In particular, the 
pair low resistive state (LRS)/high resistive state 
(HRS) means logic value zero, while the pair HRS/
LRS means logic value one. Readout is performed 
by comparing the resistance values of the two dif-
ferential devices, thus doubling the memory read 
window with regard to the conventional 1T1R cell 
architecture shown in Figure 5. This differential 
architecture reduces the number of bit errors due 
to device variations and limited endurance. Its 
benefits are demonstrated on a BNN. This inherent 
fault-tolerant architecture has auxiliary advantages. 
Weak programming conditions can be applied to 
achieve energy savings. It also features outstanding 

Figure 20. Proactive hardware-based approaches.
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endurance opening the way to the possibility of 
on-chip training of neural networks.

In [225], a hardened SRAM cell is proposed for 
DNN accelerators. Based on the key observation 
of sparsity in DNNs (i.e., weights have a strong bias 
toward zero) and given that bit flipping from zero to 
one is more likely to cause a failure of DNN outputs, 
the proposed memory cell provides robust immunity 
against node upsets and reduces the leakage current 
dramatically when zero is stored in the cell. 

Memory aging mitigation
A low-overhead aging mitigation scheme of 

weight memory buffers in DNN accelerators is pro-
posed in [232]. The underlying observation is that 
optimized aging can be achieved by balancing the 
duty cycle of the memory. To this end, a microar-
chitecture is proposed composed of a write data 
encoder (WDE) for encoding the weights before 
writing them to the on-chip memory, and a read data 
decoder (RDD) which performs the inverse function 
when reading the data from the on-chip memory 
and before passing it to the PEs. The WDE XORes 
the incoming weights with a common 1-bit enable 
signal that is generated by a true random bit gener-
ator (TRBG), thus adding a sense of randomness to 
the bits to be written in the memory. The output of 
the TRBG is periodically inverted by XORing it with 
a bitstring stored in a register to account for the sce-
nario where the TRBG is biased toward either “0” or 
“1.” The RDD performs the same xor operation as 
the WDE on the outgoing bits. Results show that this 
scheme offers maximum aging mitigation for any 
data representation and across different accelerators 
and DNN models.

Activation clipping
In [235], it is observed that as the fault rate 

increases, the activation of neurons becomes more 
intense. In [57], when the activation output of a neu-
ron exceeds by 10% the expected range of values, 
it is considered a symptom of an error occurring. 
To this end, in [235], it is proposed to use a clipped 
version of the activation function such that when 
activation exceeds a threshold, then the neuron is 
silenced. A search algorithm using the area under 
the curve accuracy versus fault rate as a metric is 
proposed to find the optimal threshold that maxi-
mizes classification accuracy under different fault 
rates. This strategy is investigated also in [236], 

[237], and [238]. In [236], values are truncated to 
the maximum value observed in the training set. 
While in [235] and [236], activation functions are 
bounded globally per layer, in [237], the truncation 
value is fine-grained per neuron. In [238], to avoid 
the risk of false positives, it is proposed to compute 
several single statistics on neurons’ output values, 
that is, minimum, maximum, average, and standard 
deviation. If at least two different statistics are out of 
range, then a fault detection is flagged.

In [81], it is proposed to redesign the maxpool 
layer of CNNs so as to halter the fault propagation. 
The redesign consists in evaluating if the value of the 
max element is higher than a threshold and, if so, 
then halt the processing of the frame and move on 
to the next frame, or use the second largest element 
if it is reasonably small.

Redundancy-based
State-of-the-art AI hardware accelerators for 

autonomous driving vehicles employ dual-modular 
redundancy (DMR) to ensure safety for the system 
[250], [251], which requires substantial hardware 
resources.

One idea is to perform selective TMR applied to 
the most critical layers instead of a full TMR, which 
is inspired by the observation that different layers 
have different sensitivity to faults [85], [91], [101], 
[104]. Selective TMR is feasible resource-wise, and 
the resultant area and power consumption over-
head can be tolerated. Typically, the most critical 
output layer is protected with TMR, which is enough 
to achieve a high level of fault masking. For deep 
networks, the output layer accounts for a small per-
centage of neurons of the whole network, thus the 
percentage overhead of applying TMR only to the 
output layer scales down.

Redundancy-based fault tolerance can also be 
applied at different hierarchy levels, for example, 
TMR of critical kernels [77], DMR of critical feature 
maps [252], TMR of MSBs in computational blocks 
such as adders and multipliers [253], and TMR of 
critical neurons [254].

In [255], a redundancy-based fault-tolerance strat-
egy, called hybrid computing architecture (HyCA), is 
proposed for the 2-D array of PEs that greatly reduces 
the overhead of the classical DMR. The basic idea is 
to add a separate set of dot-production processing 
units (DPPUs) in parallel to the original computing 
array of PEs. HyCA can be utilized to scan the entire 
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2-D array and detect the faulty PEs at runtime, and 
recompute all the operations that are mapped to the 
faulty PEs, independent of the location of faulty PEs.

Finally, a redundancy-based fault-tolerant strat-
egy based on ensemble learning is proposed in 
[256]. Ensemble learning consists of training a set 
of independent smaller and weak (i.e., with lower 
accuracy) base networks, using different net-
work structures, learning algorithms, and training 
data sets. Thereafter, the results are combined, for 
instance using voting or averaging, to improve task 
performance. The idea is that when one or more 
weak networks fail due to a fault, the ensemble of 
other networks can still operate reliably.

Hardening against radiation
In general, ionizing radiation, depending on the 

energy of the incident particle and the time of expo-
sure, can give rise to transient events or permanent 
damage, such as bit-flips, shift in the transistor’s 
threshold voltage, and an increase in the leakage 
current. Transistor hardening refers to applying 
changes in the layout so as to tolerate exposure to 
ionizing radiation. In [272], a spiking neuron design 
is hardened by redesigning the transistors’ layout 
using an enclosed layout transistor (ELT) topology 
for the gate. This particular neuron uses a memris-
tive device to implement the memory element, that 
is, the membrane, of the neuron. The area overhead 

with respect to the original design excluding the 
memristive device is 4.51x. However, taking into 
account the memristive device, it is argued that 
area overhead is negligible because the memristive 
device is placed on top of the CMOS subsystem dur-
ing the back-end phase which requires an extensive 
area.

Reactive hardware-based approaches
Figure 21 illustrates different reactive hard-

ware-based approaches described in this section, 
separating the two underlying mechanisms, namely 
fault/error detection and localization and fault/error 
mitigation.

Weight shifting
In [226], the weight-shifting fault-recovery mech-

anism is proposed. If an incoming synapse of a neu-
ron is detected faulty, then the loss is compensated 
by adapting the weights of other synapses. If a neu-
ron is faulty, then its outgoing synapses are treated 
as faulty.

Relearning
In [233], a high-level biologically inspired model 

of the cortical structure of the brain is developed 
capable of performing feed-forward sensory pro-
cessing and automatic abstraction for visual inputs. 
The model is trained using Hebbian learning with 

Figure 21. Reactive hardware-based approaches.
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repeated exposure to input samples. A software ver-
sion of the model is deployed on a GPU for fault-tol-
erant experimentation. The fault model considers 
neurons stuck-at faults, that is, neurons that do not fire 
when they should (stuck-at-0) or they fire when they 
should not (stuck-at-1). Single and multiple fault sce-
narios are studied including spatially distributed and 
clustered faults. For stuck-at-0 neurons, the network 
is capable of relearning as their functionality is taken 
over by neighboring neurons. On the other hand, 
stuck-at-1 neurons can severely degrade the perfor-
mance and upon detection are disabled and the net-
work relearns. Detection is performed by interrupting 
the operation and recomputing the response of the 
winning minicolumn of neurons on two neighboring 
minicolumns. A voting scheme is used to determine a 
defective minicolumn. This is a form of TMR but uses 
the existing redundancy. The model’s accuracy with 
relearning shows a graceful degradation to faults and 
a large number of faults can be tolerated.

Algorithmic-based fault tolerance
Algorithmic-based fault tolerance (ABFT), orig-

inally proposed in [279], is a low-cost solution for 
detecting and correcting abnormal behavior in 
matrix–matrix multiplications based on check-
sums. As neural network operation heavily relies on 
matrix–matrix multiplications, ABFT finds a natural 
application for enabling fault tolerance in AI hard-
ware accelerators with several ABFT schemes being 
proposed to date in the literature [81], [239], [240], 
[241], [242], [243], [244].

As an example, in [242], the compute underutili-
zation of inference-optimized GPUs is exploited by 
evaluating the computing resource bottleneck for 
GPU kernels. The metric being used is a compari-
son between the arithmetic intensity of the kernel 
(in GPU terminology, a GPU kernel consists of mul-
tiple threads that can be executed in parallel) ver-
sus the compute-to-memory-bandwidth ratio (CMR) 
of the GPU. A kernel is compute-bound if the arith-
metic intensity is higher than the CMR; otherwise, it 
is memory-bandwidth-bound. For a memory-band-
width-bound kernel (i.e., with low arithmetic 
intensity running on a high CMR hardware), there 
is an opportunity to leverage the underutilization 
of compute units to allow ABFT execution on 
unused resources. Motivated by this observation, 
a finer-grained ABFT scheme is proposed, referred 
to as thread-level ABFT, as illustrated in Figure 22. 

Performing ABFT at the thread level can exploit 
compute underutilization of bandwidth-bound 
kernel to reduce the execution time overhead of 
ABFT. Furthermore, an arithmetic-intensity-guided 
ABFT is proposed that selects the best ABFT 
scheme for each individual layer of the network, 
for example, global-level (i.e., kernel-level) ABFT 
for compute-bound layers, and thread-level ABFT 
for memory-bandwidth-bound layers.

An implementation of ABFT for memristor cross-
bar-array architectures is proposed in [240]. As illus-
trated in Figure 23, a crossbar of size rxbar × cxbar is 
partitioned into smaller crossbars of size rt × ct. For 
each smaller crossbar, two extra columns are added. 
In the first column, the cell in row i computes the 
nonweighted checksum Gr(i, 1) = Σct

j=1 G(i,j), where 
G(i,j) is the nominal expected conductance value of 
the cell in position (i,j) of the crossbar. In the sec-
ond column, the cell in row i computes the weighted 
checksum Gr (i, 2) = Σct

j=1 WG(j) • G(i,j), where WG(j) = j. 
For each smaller crossbar, M test input vectors are 
applied, denoted by Vt(k) = [Vt(k, 1),…, Vt(k, rt)], 
where Vt(k, i) = V0 • Wt(k, i), V0 is a unit voltage, and 
Wt(k,i) = (f(i))k-1, f(i) = 2i-1, k = 1, … ,M. The outputs of 
the two checksum columns for test input k are Os(k, 
1) = Σrt

i=1 Vt(k,i) • Gr(i, 1) and Os(k, 2) = Σrt
i=1 Vt(k,i) 

• Gr(i, 2). The output of crossbar column j for test 
input k is Ot(k,j) = Σrt

i=1 Vt(k, i) • G′(i,j), where G′(i,j) is 
the actual conductance value of the cell in the (i,j) 
position of the crossbar. Two signatures are defined 
for test input k, namely A(k) = (Σct

j=1 Ot(k,j) − Os(k, 
1))/Vo = Σct

j=1 Σ
rt
i=1 Wt(k,i) • [G′(i,j) − G(i,j)] and B(k) 

= (Σct
j=1 wG(j) Ot(k,j) − Os(k, 2)/V0 = Σct

j=1 Σ
rt
i=1 wG( j) • 

Wt(k,i) • [G′(i,j) − G(i,j)]. In fault-free operation, A(k) 
= B(k) = 0. Based on the percentage of faulty cells, 
the size rt × ct is chosen such that no more than two 
faults occur in a small crossbar. In this case, using 
M = 4 test inputs, we can perform fault localization 
and compute conductance deviations in faulty cells 
in both the crossbar and the checksum columns 
using the two signatures. In particular, we can write 
eight equations with six unknowns, that is, the fault 
locations, denoted by (x1 ,y1) and (x2, y2), and the 
conductance deviations, denoted by d1 and d2, for 
the two faults, and solve the system of equations with 
linear algebra.

Fault masking
In [92] and [257], memory bit-flip mitigation 

schemes are proposed with no costly fault-tolerant 



40 IEEE Design&Test

Testability and Dependability of Artificial Intelligence Hardware

operations relying on the sparsity of data. The 
assumption made is that information is available on 
which bits are affected, for example, using Razor 
shadow latches that can detect faults by monitor-
ing circuit delays [278]. The schemes are based on 

masking faulty bits. The two main schemes, namely 
word and bit masking, proposed in the case of fixed-
point data representation, are illustrated in Figure 24. 
Word masking sets all bits of the corrupted register to 
zero. This is equivalent to setting the synapse weight 
to zero which intuitively, due to the sparsity of the 
network, will have a lesser impact on the accuracy 
as opposed to leaving uncorrected a 0 → 1 bit-flip 
in a high-order position. Bit masking sets a faulty bit 
equal to the sign bit and can tolerate more faults 
than word masking. It achieves a similar effect by 
rounding the synapse weight toward zero.

In [258], a soft error detection and correction 
scheme is proposed for CNNs accelerated on FPGAs. 
Fault injection analysis shows that single-event upsets 
(SEUs) on PEs are far more consequent than SEUs 
occurring in memory. Moreover, SEUs in MSBs are 
shown to be far more critical. It is proposed to exe-
cute a self-test of PEs during free cycles motivated by 
the fact that the average PE utilization ratio is usually 
below 85% during inference. The self-test consists in 
exercising the higher bits of multiplexers and adders 
in the PE separately, and this traversal overhead can be 
easily confined within the free cycle. Temporary error 
mitigation is achieved by using a zero setting upon SEU 
detection, instead of reconfiguring the PE immediately.

In [259], a fault-tolerant design of the systolic out-
put stationary (OS) DNN architecture is proposed. 
Faults in the data path, that is, outputs of PEs, are 
detected online and mitigated. A functional online 
test approach is proposed where neighboring PEs 
are tested separately by applying the same input 
(i.e., one PE needs to be taken offline) and check-
ing if their outputs are identical. The fault mitigation 
approach is to mask the faulty PE’s output to zero. 
As a PE roughly corresponds to a single neuron, per-
forming training with dropout can augment robust-
ness. This fault-tolerant approach shows no latency 
in the inference and in terms of area overhead it 
requires the addition of three MUXes per PE and an 
external comparator for the whole PE array.

In [260], the opportunistic parity (OP) fault mit-
igation technique is proposed for protecting CNN 
weights. OP is based on the observation that errors 
in the LSBs of the weights can be tolerated. The idea 
is to flip the LSB if needed such that the weight has 
even parity. Checking the parity code can detect 
an odd number of bit flips. Noting that a memory 
word can be large and multiple weights can be 
stored in one memory word, we can adjust parity 

Figure 22. ABFT global and local schemes.

Figure 23. Memristor crossbar checksums.

Figure 24. Word and bit masking error 
mitigation techniques.
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for individual weights or the entire memory word. 
When a parity error is detected, the weight values 
are replaced with zeros.

Regarding SNNs, with the passive neuron fault 
tolerance scheme based on dropout in place, active 
neuron fault tolerance in hidden layers needs only 
to address neuron saturation (see previous sections) 
[91]. A compact online monitor can be used per 
neuron to detect this symptom [91]. The monitor, 
shown in Figure 25, is based on a small-sized counter 
that counts the number of spikes a neuron produces 
after every single input spike and has a reset port 
connected to the input of the neuron. A saturated 
neuron will produce spikes with higher frequency 
than usual, causing the counter to overflow before 
an incoming spike resets it again. A latch is set when 
an overflow happens and an error flag is raised. On 
the other hand, in fault-free operation, the neuron 
needs to integrate multiple input spikes before it 
can produce a spike of its own, hence the counter is 
always reset, and the error flag signal stays at zero. If 
saturation is detected, the “fault hopping” concept is 
proposed as a recovery mechanism [91]. The idea is 
to turn a saturated neuron into a dead neuron since 
the network can withstand dead neuron faults. This 
simplifies the hardware implementation requiring 
adding a single extra transistor per neuron. An exam-
ple is shown in Figure 26 where a transistor shown 
in red is added to cut off the biasing of the spiking 
neuron when the flag signal indicating neuron satu-
ration goes high.

In [261], a run-time soft-error mitigation tech-
nique for SNNs is proposed. A fault criticality anal-
ysis shows that increased weights and neuron 
saturation are the only faults that can decrease infer-
ence accuracy. For synaptic faults, it is proposed to 
perform weight bounding. In particular, if the weight 
is greater than a threshold, then it is replaced with 
a predefined value (e.g., zero or maximum weight 
value from the nominal SNN). For neuron satura-
tion faults, if the membrane voltage stays above the 
threshold for more than two clock cycles, then spike 
generation is disabled similar to [91].

ML based
In [265], an ML-based method is proposed to 

detect an anomaly in a DNN and mitigate the effect 
at run time. The fault model is transient faults in the 
form of random single bit-flips in the buffer memo-
ries and data paths of the accelerator. For a given 

input, each layer of the DNN provides a set of feature 
activations (i.e., the respective neuron output val-
ues). A unified feature activation trace is generated 
by concatenating the feature activations of all layers. 
Then, a small FFNN, named as error detection and 
mitigation network (EDMN), is trained in this feature 
space to perform anomaly detection due to critical 
bit-flips, as well as to predict and recover the correct 
classification result for error mitigation. The training 
data is generated by random bit-flip injection simula-
tions recording the feature and classification result. 
Furthermore, the small EDMN can be safeguarded 
against faults by using classic methods, for example, 
TMR.

Neuron adaptation
An application-specific fault-tolerant design of 

an SNN implemented in an FPGA in proposed in 
[269]. The SNN is used to control the motion of a 
robotic car, that is, speed and direction, establish-
ing an obstacle avoidance task. There are four motor 
neurons controlling the forward (F), right (R), left 
(L), and reverse (REV) movements. The neuron’s 
excitatory synapse receives input current according 
to the obstacle distance. Prioritization is achieved 

Figure 25. Symptom detector for a spiking neuron.

Figure 26. Spiking neuron design with cut-off 
transistor enabled when the neuron starts saturating 
raising the flag signal high.
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via the inhibitory synapses. The neuron’s spiking 
rate detects the activity of the corresponding motor, 
that is, F, R, L, or REV. Fault tolerance is achieved 
by using many synapses instead of one receiving the 
same input. The neuron monitors the total injected 
current from all synapses during a time window, and 
if an abrupt or abnormal variation is noticed, then 
this points to a fault occurring in one or more syn-
apses. Fault tolerance in this context means retain-
ing the same firing rate. This is achieved with one 
of two mechanisms: 1) adjust the neuron’s threshold 
and 2) adjust the operating frequency of the neuron. 
Mechanism 2) is achieved via the dynamic partial 
reconfiguration feature of the FPGA that provides a 
way to generate custom clocks on-the-fly. The adjust-
ment scheme is not continuous, but it is based on 
a lookup table (LUT) for given expected-erroneous 
pairs of input currents.

Cross-layer approaches
Figure 27 illustrates together different cross-layer 

hardware-based approaches that will be described 
in detail in this section. 

Model/hardware codesign
In [227], a method is proposed to maintain DNN 

accuracy under high error rates by suppressing the 
numerical contributions of anomalous activation. It 

first integrates anomaly detection and suppression 
layers into DNN models. To address the training 
challenges due to the discontinuous nature of these 
layers, a two-stage training process is proposed to 
ensure a fast convergence with competitive accu-
racy. A hardware module is proposed to perform 
anomaly detection and suppression at the inference 
phase of the DNN accelerator.

In [228], a median feature selection technique 
is introduced to alleviate the impact of bit errors 
before the numerical operation of each layer. It is 
observed that the critical bit errors are often those 
leading to a significant numerical increase in the 
activation or weight magnitude. Such errors exhibit 
characteristics similar to the spike noise patterns in 
the image-processing field, where order-statistics fil-
ters have been proven to be effective against large 
spike noises. Therefore, DNN models are first trained 
with integrated median filters. After achieving the 
desired accuracy in training, the model is deployed 
on the AI accelerator with dedicated hardware per-
forming median filtering operations.

Fault-aware pruning with retraining
In [95], a fault-tolerant scheme is proposed for 

systolic array-based DNN accelerators, depicted in 
Figure 28. In the first step, the scheme includes fault-
aware pruning where the faulty MAC is bypassed 

Figure 27. Cross-layer hardware-based approaches.
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using multiplexing, which is equivalent to setting the 
MAC’s weight to zero. In the second step, the pruned 
systolic array is retrained. It is demonstrated that this 
fault tolerance scheme can maintain a classification 
accuracy close to the baseline even when up to half 
of the MAC units are faulty. It is also demonstrated 
that with the fault-tolerant scheme in place, more 
aggressive voltage under-scaling can be employed 
to provide energy savings while not sacrificing clas-
sification accuracy.

Fault-aware mapping
In [245], the underlying hypothesis is that neu-

rons with strong contributions have a high impact 
on the inference accuracy if they are faulty, thus a 
strong contribution implies low error resiliency. To 
derive the ranking, an algorithm is proposed based 
on the Taylor decomposition of the network and lay-
er-wise propagation of the contribution. The average 
contribution is considered taking the mean over the 
training set. Thereafter, it is proposed to design an 
accelerator to have a number of protected PEs and 
memory buffers, where protected means that they 
are safeguarded against faults by utilizing spatial or 
temporal redundancy and error correction mecha-
nisms. The neurons with the lower error resiliency 
are mapped to protected elements, whereas neu-
rons with the highest error resiliency are mapped to 
unprotected and unreliable elements.

In the case of overlay architectures that consist of an 
array of PEs on which layers or a portion of layers are 
scheduled to be executed in sequence, whenever a sin-
gle PE is faulty, this affects multiple outputs both within 
a layer or among layers. Thus, the portion of the neural 
network affected by the corrupted PEs depends on the 
scheduling. One zero-overhead approach, therefore, 
would be to identify and utilize the optimal scheduling 
that minimizes the accuracy drop [101].

In [246], first, the faulty PEs are pruned after test-
ing, similar to [95]. Given the saliency of the weights, 
it is proposed to map neurons of a layer on different 
segments of the hardware such that the sum of the 
saliency of the weights that are mapped on pruned 
PEs during inference is minimized.

In [247], it is proposed to first identify the most 
critical neurons and then determine an optimal 
scheduling that distributes evenly the critical neu-
rons to the available PEs such that if a PE exhibits a 
fault this affects the functionality of a limited number 
of neurons.

In [248], it is proposed to first derive the memory 
fault map using testing and then apply a fault-aware 
mapping consisting of bit shuffling to prioritize plac-
ing the MSBs on the nonfaulty memory cells. This 
strategy is also investigated in [249].

Variation-aware mapping for memristor cross-
bar arrays

Line resistances degrade the voltage levels along 
the crossbar columns, thereby inducing more errors 
at the columns away from the drivers. In [262], it is 
proposed to rank the DNN kernels based on sensi-
tivity analysis and rearrange the columns such that 
the most sensitive kernels are mapped closer to the 
drivers.

In [263], it is shown with circuit simulations that 
a memristor crossbar presents a current imbalance, 
that is, asymmetry in the current propagating through 
its different memristors. This current instability is due 
to the parasitic components on the horizontal and 
vertical wires of the crossbar that result in voltage 
drops. For example, the current on the largest path 
from a presynaptic neuron to a postsynaptic neuron, 
that is, the path that traverses the top horizontal line 
through the upper right memristor and down the far 
right vertical line, is smaller compared to the current 
on the smallest path, that is, the path that includes 
only the bottom left memristor. This current varia-
tion results in endurance variability of memristors 
in the crossbar, where endurance is defined as the 
ratio of average failure time and switching activity. 
For example, the memristor in the upper right cor-
ner will have higher endurance, whereas the mem-
ristor in the bottom left corner will have the lowest 

Figure 28. Fault-aware pruning followed by retraining.
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endurance. Based on this observation, the eSpine 
framework is proposed for endurance-aware map-
ping of SNNs to neuromorphic hardware. Given the 
SNN workload, the objective of eSpine is to find an 
intelligent mapping of neurons and synapses to neu-
romorphic hardware, such that synapses with high 
activation are implemented on memristors with high 
endurance and vice versa.

Adaptive training after testing
In [266], a methodology is proposed, named 

memory adaptive training with in-situ canaries 
(MATIC), aiming at aggressive voltage scaling of 
weight SRAMs in AI hardware accelerators obtain-
ing significant energy savings, while maintaining 
the inference accuracy. The idea is to perform read-
after-write and read-after-read operations on each 
SRAM address of the chip, to generate a profile or 
failure map of the marginal, failure-prone bit cells. 
Then memory adaptive training is performed where 
the profiled bit errors are injected into the training 
process enabling the DNN to compensate via learn-
ing. In this way, during normal operation, by apply-
ing voltage scaling, a significant fraction of resultant 
bit errors is passively tolerated. Furthermore, tuna-
ble accuracy-energy tradeoffs can be achieved by 
using a select set of bit cells that are on the margin of 
read failure as a canary. The canaries are replicated 
critical bit cells that can detect imminent failures. 
Such in-situ canary bits can be polled at run-time to 
determine whether voltage modifications should be 
applied to maintain an advantageous accuracy-en-
ergy tradeoff.

In [146], periodical online testing is performed 
using a functional test set of adversarial examples. 
If the network is found faulty, memory fault diag-
nosis is performed using a march test. If a soft fault 
has occurred, the remedy is to refresh the memory 
with a model backup stored in the edge device. 
If the fault is permanent, the fault map is sent to 
the cloud for model retraining after masking the 
faults, and afterward, the model is retransmitted to 
the edge device.

Aging-aware online training of memristor 
crossbar arrays

The writing endurance of memristor cells ranges 
from 106 to 108 write operations, whereas the training 
phase can take 105–107 iterations. Therefore, online 
training in memristor crossbar-based accelerators 

causes degradation of the valid resistance range of 
the memristor, an effect called aging in the mem-
ristor, resulting in most memristor cells becoming 
faulty. In [270] and [271], frameworks are proposed 
combining software training and hardware tuning 
to counter the aging effect. For example, in [270], 
first, the threshold training method is introduced to 
reduce the number of write operations in each iter-
ation. The observation is that for the vast majority of 
weights, the weight update is very small. In this case, 
the weight update is suppressed. Second, after a 
fixed number of iterations, a fault detection method 
is executed to detect stuck-at faults and update the 
status of cells. The method, called quiescent-voltage 
comparison, consists of the following steps: 1) divide 
the crossbar into smaller crossbars; 2) for each cross-
bar, perform a write operation with the same write 
change to every cell; and 3) compare the actual 
crossbar outputs to the expected reference output 
and if a discrepancy is found, then it means that at 
least one cell in the selected crossbar is stuck-at and 
cannot be updated when we write an increment. By 
using a smaller crossbar size, we increase fault detec-
tion accuracy at the expense of higher test time. After 
fault detection, the third method exploits the fact 
that over half of the weights are zero. The idea is to 
map zero weights to cells that have stuck-at-0 faults. 
This can be achieved by reordering the column and 
rows of the weight matrix. To do this efficiently while 
respecting the inherent connection of cascaded lay-
ers, it is proposed to reorder only the neurons.

Thermal-aware optimization of memristor 
crossbar arrays

Temperature increase changes the conductance 
value of a memristor cell and decreases its endur-
ance. In [273], [274], and [275], thermal-aware train-
ing and online optimization schemes are proposed 
to resolve the temperature-dependent retention 
issues of memristors with one-time DNN deployment.

Perspectives

Fault criticality assessment
The lesson learned from published fault injec-

tion experiments is that not all faults are equal. 
Most end up being benign, that is, they are masked, 
their effect on the output is not large enough 
to result in accuracy loss, or the accuracy loss is 
insignificant. On the other hand, there are some 
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suspect critical faults, for example, 0→1 bit flips in 
high-order bit positions, stuck-at-1 artificial neuron 
activations, saturated spiking neurons, and faults in 
the last layers, especially in the output layer. Yet, 
the locations of critical faults cannot be safely pre-
sumed and depend on many factors, such as the 
network architecture (e.g., depth, number of chan-
nels, etc.), the sparsity of the network (e.g., percent-
age of near-zero weights), and the cognitive task 
(e.g., data set). Given that the fault space explodes 
for deep networks, to speed up reliability analysis 
one of the main challenges is reducing safely the 
fault space aiming at circumventing simulation of 
faults that would prove to be benign. For example, 
we can use ML to predict fault criticality and block 
the simulation unless a fault has some likelihood 
of being critical. This will allow for avoiding specu-
lative and unguided fault sampling and evaluating 
more faults, thus identifying with higher probability 
the critical faults that will need to be dealt with fault 
tolerance techniques. Identifying the critical faults 
will allow better targeting the fault tolerance strate-
gies and reducing test costs.

Along this direction, we require faster automated 
fault injection frameworks. More “tricks” to speed 
up simulation can be integrated into current frame-
works. For example, as every layer is computed 
sequentially, if a fault is masked in an intermediate 
layer, then simulation can be stopped early. Or, for 
a fault in a given layer, we can start the simulation 
from this layer considering the golden fault-free 
response of the previous layer.

A second main challenge is developing fault mod-
els for higher-level descriptions of the accelerator 
such that they are plausible in hardware and cap-
ture well-foreseen hardware-level faults. Many works 
consider faults at an abstract behavioral level that do 
not necessarily map to hardware or their probability 
of occurrence from a hardware point of view is very 
small. Most fault injection experiments consider a sub-
set of possible faults or a subset of the subblocks of 
an accelerator. Fault injection experiments on actual 
hardware or radiation experiments can shed more light 
on the impact of faults but ideally, the impact should 
be assessed earlier at the design stage so as to add the 
necessary provisions on-chip for fault tolerance.

Testability
As discussed above, a plethora of new testability 

features and methodologies have been proposed in 

the literature and adopted in practical AI hardware 
accelerator designs. However, moving forward, 
there is still a pressing need for novel DFT solutions 
to target existing and upcoming challenges. We have 
seen various demands emerging on the horizon for 
products in the next several years.

First, as part of ordinary ASIC flow, DFT activities 
are tightly associated with the design and physical 
design in many aspects, such as the turn-around 
cycle, physical design tools, methodologies, and 
even computing resources. Since many of today’s 
large AI hardware accelerator designs are indeed 
challenging the design and physical design limita-
tions, posing direct threats to project delivery, suc-
cessful DFT solutions should recognize and attempt 
to help mitigate these threats. For example, large 
AI hardware accelerator designs usually cannot be 
readily fit into existing computing resources (i.e., 
servers, emulators, etc.), hence design needs to be 
sliced into multiple modes and multiple partitions. 
Without a feasible solution, the number of modes 
and partitions may quickly get out of control and 
computing resources will soon be depleted. In many 
cases, DFT verification may demand even more 
resources than function verification. Existing tools 
provide basic help, yet a major function and DFT 
verification framework still have to be handcrafted 
to ensure resource availability and design space 
coverage. On the physical design side, many issues 
have been addressed in earlier sections and current 
DFT tools have had a strong focus on solving these 
problems. However, major challenges continue to 
bother the DFT owners, such as timing budget, PPA 
request, signal routability, performance correlation, 
and so on, not only in large AI hardware accelera-
tor designs for cloud utilization, but also in smaller 
designs used in edge devices, which are extremely 
sensitive to power and area. As such, DFT architects 
have to be well versed in all stages of the design flow 
and ensure their customized DFT architecture and 
flow can accommodate the design and physical 
design requirements to meet the target of PPA and 
time-to-market.

Second, new AI hardware accelerator architec-
tures may require the advances of novel DFT archi-
tectures, algorithms, or models, needless to mention 
the exotic neuromorphic and in-memory computing 
hardware, which have spurred research on many 
new DFT architectures and fault models. Even the 
traditional style of design may encounter a much 
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higher level of challenges than before. For exam-
ple, as mentioned earlier, DFT for large AI hardware 
accelerator designs needs to be multimode and 
multipartition in design and verification spaces. 
This may incur an excessive number of test patterns, 
causing ATE memory overflow or unaccepted test 
expenses. This is not a new problem, but exacer-
bated in AI hardware accelerators. Since there are 
no readily adopted solutions, DFT architects need 
to be creative in designing some on-chip hardware 
for a low-cost test. On the other side, problems rarely 
seen before may emerge as the new norm. For exam-
ple, some AI hardware accelerator architectures 
feature unique logic that is not ATPG-friendly, for 
example, a very deep logic depth at postsynthesis 
requesting very high coverage. Traditional test point 
insertion may lead to unacceptable performance 
or area penalty. To handle such issues, upgrades 
in ATPG algorithms or DFT architecture may be 
needed. Moreover, the extensive use of large-sized 
SRAMs at advanced tech-nodes may see new types 
of memory faults, and MBIST algorithms may need 
to be updated too.

In addition, as already a trend in traditional 
design, efficient and effective DFT activities need 
to be both left-shift and right-shift. Left-shift refers 
to the DFT involvement in early design stages, for 
example, DFT flow starts with design architecting 
and floor-planning, most DFT implementations 
are done at the RTL stage, and so on. Right-shift 
refers to the DFT activities extending well into or 
even beyond postsilicon stages such as bring up, 
diagnosis, volume production, and in-field debug, 
so that the entire product life-cycle quality can 
be ensured. Since most AI hardware accelera-
tor designs are domain-specific with a very tight 
schedule, left-shift can help shrink the design cycle 
and meet the time-to-market target. Meanwhile, 
the new AI hardware accelerator architectures or 
components are usually not fully proved over their 
service time, thus a right-shift strategy is crucial to 
fully capture silicon characterization and product 
behavior over its life cycle. This learning is par-
ticularly important for mission-critical products 
such as automobiles and data centers, where reli-
ability is of top concern and in-field tests may be 
dictated. From the DFT perspective, such designs 
not only require a complete solution from the reg-
ular scan, MBIST, I/O test, to online test, but also 
a close correlation between the test and function 

operation to ensure a high-quality product. This 
goal may be as challenging as the design itself.

Finally, as Moore’s law slows down, 3-D IC has 
been proposed as a major solution to performance 
gain, cost reduction, and shrink of form factor. While 
traditional interposer-based 2.5-D solutions connect 
dies horizontally and have been widely adopted, 
3-D designs stack dies in the vertical dimension and 
currently have focused mostly on external memories 
such as HBM. Tests for 3-D IC with memory dies have 
seen major advances in addressing several chal-
lenges. First, faults on through-silicon vias (TSV) and 
memories have to be tested. Second, these faults 
need diagnosis solutions for repair and quick yield 
ramp-up. Finally, an at-speed self-test is needed to 
reduce cost and ensure fault coverage. Moving for-
ward, as stacked logic die becomes widely adopted, 
the test, diagnosis, and repair of interconnects 
between dies and test access of stacked dies seem to 
be the next challenge.

Dependability
From the perspective of AI hardware and sys-

tem dependability, one fundamental challenge 
is on specifiability of AI-based functionality. The 
traditional dependability assurance, for example, 
safety assurance required by standards such as 
ISO 26262 or IEC 61508, is based on the assump-
tion that there exists a full specification of the tar-
geted functionality. These specifications are then 
used to guide risk analysis, dependability (e.g., 
safety) management, concept development, and 
validation activities. The full specification assump-
tion holds valid for most traditional rule-based 
programmed approaches. On the other hand, 
AI-based functionality may not be fully specifi-
able. For example, the functionality of object 
recognition in autonomous driving applications 
can only partially be specified using rules. While 
the lack of full specification is exactly one basic 
driving factor of employing data-driven AI meth-
ods in these application domains, it creates a big 
challenge to dependability assurance, especially 
under the existing framework.

AI specifiability challenge is also related to its 
interpretability challenge, especially for DNNs. 
While there is a significant research effort on 
“Explainable AI,” many advanced DNN models have 
hitherto remained noninterpretable. This character-
istic of an AI-based system becomes an obstacle to 
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directly applying traditional white-box verification 
and testing methods, which are common in tradi-
tional dependability assurance practices. As we 
have surveyed, most works in AI hardware depend-
ability focus on fault tolerance techniques. While 
fault tolerance is an important means to mitigate 
dependability issues, verification and testing are 
vital components to meet the assurance require-
ments, especially from a standard compliance per-
spective (e.g., to meet ASIL requirements defined in 
ISO 26262). Existing FuSa standards, for example, 
ISO26262 and ISO21448, do not explicitly address 
the specific characteristics of the AI system. Lack of 
both specifiability and interpretability renders the 
challenges of applying a traditional ISO26262 style 
approach to AI systems, unless these obstacles are 
removed, or a new alternative approach is taken.

One outstanding challenge is how to define effi-
ciently measurable metrics for the evaluation of the 
dependability of AI hardware and systems, both 
online and offline. Most of the recent work we have 
surveyed are based on DNN models, and the met-
rics used for dependability evaluation are primarily 
based on prediction accuracy. While this metric is 
suitable for offline analysis with ground-truth info 
available (e.g., fault criticality analysis), it is chal-
lenging to use the accuracy metric during online 
dependability management where real-time assess-
ment is needed and often ground truth may not exist. 
For these types of applications, an alternative metric 
may be needed to quickly assess the dependability 
state of AI hardware and system.

Also, currently, most research has been focused 
on supervised learning for DNNs. There are other 
paradigms of AI/ML, including unsupervised learn-
ing and reinforcement learning. The dependability 
of AI hardware for these paradigms is still underex-
plored. Moreover, there is an emerging end-to-end 
DNN approach (e.g., DNN is trained to infer the 
control directly from sensor data inputs) in many AI 
application domains. How to define the appropriate 
metrics for such an approach remains a challenge.

Fault prevention and fault tolerance are cur-
rent focus areas of the AI hardware dependability 
research field, as witnessed by this survey. Fault pre-
diction may start attracting more attention in some 
dependability-critical applications, where proactive 
management is much desired. A growing interest is 
calling for more research in this direction. For exam-
ple, applying an AI approach to fault prediction of 

AI hardware may be a good example of creating a 
virtuous cycle of “AI for AI.”

Finally, from an AI hardware perspective, some AI 
hardware architectures are highly specified for train-
ing, while others target optimization for inference 
workload. While most recent dependability studies 
focus on inference AI hardware, the dependabil-
ity assurance of AI hardware used for training also 
deserves attention, especially with the edge comput-
ing and federated learning paradigms where training 
is moved from cloud to edge devices.

In this article, we presented a systematic sur-
vey on state-of-the-art research and development 
of AI hardware testability and dependability. With 
the emergence of more hardware innovations to 
address AI computing challenges, testability and 
dependability challenges of AI hardware should 
be addressed to meet both manufacturing quality 
and in-field service assurance requirements. This 
article covers the research of this new field, which 
has rapidly been evolving especially over the past 
few years. Although much work has been done, in 
the future many open challenges remain, including 
fault criticality assessment with dramatically explod-
ing fault space, hardware-aware fault modeling at 
the high abstraction level, practical DFT for large-
scale designs and 3-D/2.5-D advanced packaging, 
dependability verification and validation with the 
limited specifiability and interpretability of AI mod-
els, efficient metrics for in-field real-time dependabil-
ity evaluation, and so on. To address these existing 
and upcoming challenges, continuous advances of 
innovations from both industry and academia are 
expected over the next years.� 
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Shaping Resilient AI 
Hardware Through DNN 
Computational Feature 
Exploitation

 Deep learning has become an indispensable 
part of our modem infrastructure in the past decade. 
Our transportation, healthcare devices, and indus-
trial control systems will heavily rely on deep learn-
ing algorithms in the near future, portending the 
immense potential for delivering solutions to the fun-
damental challenges of humankind. The safety and 
reliability of deep learning accelerators have been 
promoted to the ranks of essential design consider-
ations as the adoption of deep learning techniques 
in safety-critical application domains, including 
autonomous driving, healthcare devices, robotics, 
and industrial control systems, grows apace. Expo-
sure to harsh environmental conditions or design 
marginalities may lift the likelihood of hardware 
errors considerably; the error effects might result in 
disastrous consequences and even threaten human 

life. Dedicated functional 
safety mechanisms are 
consequently necessi-
tated in these domains to 
thwart such catastrophic 
scenarios.

Error tolerance in 
deep neural networks (DNNs) is governed by rules 
that differ from those of general-purpose comput-
ing. It is widely acknowledged that neural networks 
can maintain accuracy, to a large extent, under 
small error perturbations even when such error 
effects widely diffuse throughout the model. Nev-
ertheless, hardware errors with numerical impacts 
that stretch beyond the prescribed perturbation lev-
els constitute the Achilles’ heel for DNNs, as even 
a handful of large-magnitude errors can noticeably 
deteriorate classification accuracy [1]. The com-
prehension of the inherent resilience and vulnera-
bility characteristics of DNNs is therefore essential 
for error resilience integration into deep learning 
hardware at palatable costs.

What makes this investigation for novel fault tol-
erance promising is the inherent resilience of neu-
ral networks to minor perturbations together with 
the learning flexibility of deep learning models 
even when constricted by imposed constraints. This 
flexibility of neural networks affords the construc-
tion of novel error identification mechanisms by 
shaping the inherent redundancy of deep learning 
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algorithms. Moreover, the resilience of neural net-
works to minor perturbations opens up opportuni-
ties for approximate error mitigation without having 
to pay for perfect value restoration.

Innovative approaches for introspective error 
localization and approximate error amelioration are 
essential to reap the benefits of the outlined compu-
tational characteristics of neural networks. Instead of 
conventional and costly error detection techniques, 
DNNs can identify critical hardware bit errors via 
self-error-checking invariants learned through the 
training process. We demonstrate that error detec-
tion invariants can be crafted at various granularities 
based on the needs of the application to enable low-
cost error detection and precise error localization in 
the deep learning hardware datapath while necessi-
tating no additional information redundancy.

In lieu of precise correction of the error per-
turbations, the impact of bit errors can be largely 
contained through anomaly1 suppression, which is 
carried out by dropping or filtering variables that are 
contaminated with errors. The extreme effectiveness 
of these methods in maintaining model accuracy is 
experimentally established even at high error rates, 
while the implementation of the aforementioned 
techniques rarely incurs perceptible costs nor neces-
sitates any information redundancy to deliver such 
error rectification. By simply snapping outsized error 
effects back to within the realm of minor numerical 
inaccuracies, procedures such as dropping errone-
ous values squash the error impact effectively and 
improve the bit error tolerance of deep learning 
algorithms by exploiting their inherent resilience 
characteristics to limited magnitude perturbations 
and complementing their inherent sparsity.

The approximate and resilient nature of DNNs 
yields the possibility of large-scale and efficient 
accuracy preservation by prioritizing the large-mag-
nitude bit errors and effectively attenuating them 
through the outlined approach. Such a perspective 
foreshadows fundamental breakthroughs for the 
error resilience problem in deep learning hardware 
and leads to strong functional safety characteristics 
at almost negligible costs.

Related work
Traditional fault tolerance methods are frequently 

utilized in safety-critical electronics. Parity bits and 

1The term “anomaly” in this article refers to cases where a variable diverges from its 
learned and expected value due to a hardware error.

error correction codes (ECCs) can protect data 
integrity in memory elements, and modular redun-
dancy techniques are frequently employed in the 
execution path. Traditional fault tolerance mecha-
nisms, particularly modular redundancy techniques, 
incur significant area and power overheads that may 
prove prohibitive for the resource-constrained deep 
learning hardware platforms.

Fault tolerance methods specific to neural net-
works have recently attracted attention as they 
promise strong error resilience characteristics at 
much more palatable costs in deep learning hard-
ware. Novel error detection techniques such as 
symptom-based detectors [2] rely on the expected 
distribution of neural network variables to identify 
anomalies. Algorithmic checksums [1] can detect 
bit errors in neural networks by utilizing the linearity 
property of convolutional and fully connected lay-
ers. Novel recent studies [3], [4] demonstrate that 
algorithmic consistency checks can be encoded in 
neural networks through the training process, and 
error detection can be achieved through additional 
checker neurons. The inherent resilience charac-
teristics of neural networks can be boosted through 
various error mitigation techniques, including acti-
vation range restriction [5] to attenuate large magni-
tude errors, and training the deep learning models in 
the presence of faults [6] to adapt to error perturba-
tions. Moreover, computational fabric particularities 
can be utilized to innovate the testing techniques for 
deep learning accelerators [7].

Overview of neural network 
characteristics

This section presents a brief tutorial on DNN 
computational characteristics that are of fundamen-
tal importance to the construction of novel error 
detection and mitigation techniques in deep learn-
ing hardware.

The behavior of DNNs is determined by the 
parameter configuration learned through the train-
ing process. The training procedure is carried out by 
modifying the model parameters at each step to min-
imize the loss function, which measures the close-
ness of the target value and the produced output by 
the neural network. Additional behavioral goals can 
thus be embedded into DNNs by augmenting the 
loss function with well-crafted supplementary terms 
for the desired goals. To illustrate, two parameters 
can be forced to be as numerically close as possible 
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simply by adding their distance (|w1 – w2|) to the loss 
function as an additional term. Such techniques con-
stitute a highly effective approach for embedding 
invariants into DNNs, thus enabling the error-caused 
violation of such invariants at inference time to serve 
as practical error detection mechanisms.

Moreover, the flexibility of the training process in 
neural networks spawns a diverse set of models of 
comparable accuracy levels, even including ones that 
fulfill strict constraints imposed on the computational 
graph. For instance, the forward pass of the model can 
be modified to rein in the propagated variable mag-
nitude if the observed magnitude is unusually larger 
than the expected value. Neural networks can be 
trained effectively under graph constraints as long as 
the necessary information represented in the forward 
pass and the backward pass is able to be carried out 
efficiently. Invariants embedded into neural networks 
through the imposed graph constraints can then be 
utilized for error identification at inference time.

A few other essential properties of DNNs can fur-
ther introduce significant innovations to the error 
correction problem in deep learning hardware. Con-
sider for starters that the final classification decision 
in a neural network is performed by finding the out-
put position with the highest value in the last Softmax 
layer; an error in the intermediate variables is deemed 
therefore noncritical as long as the output position of 
the numerically largest value in the last layer remains 
constant. Second, the distribution of neural network 
parameters is observed to be clustered around zero 
and often span only a minute numerical range [8]. 
In a similar vein, not only are the majority of the 
observed activations restricted to small values as well, 
but they exhibit high levels of sparsity furthermore.

The inherent resilience characteristics and the 
predictable and well-behaved numerical distribution 
of neural network variables bolster the feasibility of 
approximate error correction. The value of an errone-
ous variable can be effectively estimated so as to min-
imize its impact on the output and maintain accuracy 
without necessitating perfect value restoration, thus 
significantly reducing the need for information redun-
dancy for error correction operations. Furthermore, 
certain training techniques can increase the correla-
tion across variables [9] and impart even higher pre-
cision to the value restoration process.

The outlined properties of neural networks are 
fundamental to the context of our discussion as 
they catalyze innovation in the neural network fault 

tolerance problem to deliver superior resilience 
goals often with insignificant overheads.

Learning error-checking invariants in 
neural networks

The flexibility of the training process can be uti-
lized to inject useful invariants in DNNs, which facil-
itate highly cost-efficient error detection even across 
nonlinearities. We identify two types of potential 
invariants that can be injected into deep learning 
models for coarse-grained detection and fine-grained 
error localization. The embedding of these invariant 
types is achieved through dedicated regularization 
terms in the training loss function [10], and the 
integration of custom weight or activation propa-
gation rules in the neural network graph [9], [11], 
respectively.

The first approach introduces coarse-grained 
error-checking invariants (i.e., checksums) in neural 
network layers by employing a custom regularization 
term in the training loss function. This scheme can 
be constructed easily in a few fundamental steps. 
We first partition the outputs of each neural network 
layer into two groups, such as two neuron groups 
for the fully connected layers or two output chan-
nel groups for the convolutional layers. The outputs 
of the two partitions are accumulated separately in 
the channel dimension, and the mean squared dif-
ference of the accumulations for the two partitions is 
included as a penalty term in the loss function. The 
introduced penalty term reduces the observed max-
imum mean squared differences between the group 
summations (i.e., maximum checksum deviation) 
to the tune of a few magnitude orders, as demon-
strated in Figure 1. The significant reduction in group 
differences and the consequent balancing provides 
ample resolution for error detection in the case of a 
numerical error modifying the sum in one partition, 
thus distorting the established balance. Fortuitously, 
the employed penalty term of group differences 
usually operates as a regularizer as well, leading to 
improved generalization and higher test/validation 
set accuracy, as also visualized in Figure 1.

Error checking at runtime can be performed by 
monitoring the group summation differences at 
each layer through a single additional neuron or a 
1 × 1 convolution filter in the subsequent layer, as an 
example for the fully connected layers illustrates in 
Figure 2. The expected maximum deviation value in 
the absence of errors is identified through one-time 
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profiling at each layer. If the output of the checker 
neuron deviates from zero by more than the profiled 
threshold for the corresponding layer, it signals an 
error presence. Our experimental analysis in [10] 
affirms that balanced output partitions detect more 
than 95% of the error-caused misclassification cases 
without any false alarms. The software implemen-
tation of this approach incurs a negligible increase 
in parameters and a performance overhead con-
strained to around 1% on a CPU.

While such coarse-grained invariants provide 
information only on error presence but no precise 
error localization, they enjoy the advantage of an 
entire software implementation with native neural 
network operations that are deployed with ease in 

off-the-shelf hardware platforms, including CPUs, 
GPUs, and deep learning accelerators. Moreover, the 
footprint on the obtained model is found to be rather 
minimal. Coarse-grained invariants are ideal for safe-
ty-critical designs that necessitate the detection of 
rare error incidents (i.e., single-event upsets caused 
by high-energy particles) where the mitigation action 
can be effected through system-level approaches.

An alternate approach we propose brings on more 
precise localization of anomalous DNN variables 
through the imposition of local variable propagation 
rules in the computational graph. An example propa-
gation rule could be a simple numerical order relation-
ship across the neighboring variables where a weight 
or activation variable Ac is declared anomalous if its 
magnitude unusually exceeds the neighboring value 
Ac+1 by a preset relationship (Figure 3a), otherwise 
deemed normal (Figure 3b) and propagated in the 
neural network graph with no modification.

Fine-grained invariants can be embedded into 
neural network layers by imposing custom propa-
gation rules in both the forward and the backward 
pass of training and ensuring that the deep learning 
model attains a competitive accuracy within the 
confines of these rules. Invariant integration incur-
ring neither additional information redundancy nor 
baseline accuracy degradation can be achieved 
through inherent model redundancy and training 
process flexibility [9], [11].

The violation of these embedded invariants due 
to a hardware error can localize the erroneous vari-
ables at inference time with high precision. The fine-
grained nature of such invariants engenders precise 
error localization even in the presence of multiple 
errors. After error localization, the novel error sup-
pression methods to be outlined in the next section 
can be employed to contain error effects and main-
tain neural network accuracy gracefully even while 
suffering extreme bit error rates unimaginable in 
conventional fault-tolerant designs.

While the footprint of fine-grained invariants on 
the trained model is more noticeable than the coarse-
grained counterparts, the inherent redundancy of 
modern deep learning models allows injection of 
such invariants into the model without requiring any 
additional information redundancy or impacting 
error-free model accuracy. Minor hardware exten-
sions are necessary for the accelerator designs to 
check the invariant conditions and perform the miti-
gation actions efficiently, as discussed further in the 

Figure 1. Balance checksum deviation and model 
accuracy due to regularization (DNN model 
similar to AlexNet trained on German Traffic Sign 
Recognition Benchmark [GTSRB] data set).

Figure 2. Error checking at inference time via 
coarse-grained invariants.
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next section. Unlike their coarse-grained counter-
parts, fine-grained invariants can localize the errors 
with high precision, and when paired with novel 
error suppression methods, deliver complete algo-
rithmic resilience for even extreme bit error rates of 
up to a few percent.

Maintaining neural network accuracy 
with error suppression

We have illustrated that the problem of error 
detection could be resolved in an innovative man-
ner by integrating computational invariants into neu-
ral networks and employing them for error detection 
in inference. The localization of the errors through 
the fine-grained invariants can be followed up by the 
suppression of the numerical distortion prior to the 
execution of each layer. Such suppression can be 
effected by dropping variables (setting to zero), clip-
ping their magnitude to within the usual range [11], 
or passing the variables through filtering operations 
[9], as demonstrated in Figure 4. Disproportionate 
error effects can thus be arrested at their tracks and 
reduced back to size before they have had a chance 
to diffuse in the network. The beneficial impact of 
error suppression can also be enjoyed when drop-
ping erroneous variables by setting them to zero. 
This alternate approach can effectively alleviate the 
impact of large-magnitude errors since the inherent 
sparsity of DNNs and the clustered distribution of 
DNN variables around zero leads to graceful tolera-
tion of variable drop effects.

Introduced fine-grained invariants can be checked 
and the anomalous variables suppressed efficiently 
at inference time through dedicated hardware 
extensions in DNN accelerators. These extensions 
can be implemented at minimal hardware cost with 
basic hardware components such as comparators 

and multiplexers. Figure 5 demonstrates a possible 
option for hardware integration where the detection 
and suppression are carried out prior to processing 
each neural network layer in the accelerator pipe-
line. The proposed placement of the dedicated hard-
ware unit protects against SRAM buffer errors and 
timing errors in the computational fabric. Anomaly 
detection and suppression techniques require no 
additional information redundancy, with the asso-
ciated operations performed efficiently in hardware 
with no throughput impact while imposing area and 
power overheads of less than 0.5% and 0.2%, respec-
tively, when implemented on a typical DNN acceler-
ator (DNNWeaver v2.0 [12]).

Overall, the two outlined novel mechanisms of 
error localization and suppression can be coupled 
to deliver highly resilient neural network processing 
systems. Potential error locations are pinpointed 

Figure 3. Anomaly detection with local 
magnitude comparison.

Figure 4. Median filtering in fully connected 
layers.

Figure 5. Anomaly detection and suppression in 
a deep learning accelerator.
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through computational invariants injected through 
the learning process, and anomalous variables 
are snapped back outright before they have had a 
chance to propagate and influence the neural net-
work decisions. In contrast to the outright effect of 
the large deviation bit errors encountered, the impact 
of suppression, which accords with the inherent 
distribution of neural network variables, on model 
accuracy is highly muted. The described approach 
is a potent strategy to engender approximate error 
resilience methods, revolutionizing our perspectives 
on functional safety for deep learning hardware. As 
a result, strict safety goals can be attained at minimal 
additional cost in DNN applications.

Experimental analysis
We demonstrate the effectiveness of the proposed 

methods in Figure 6 by performing error injection on 
three different neural network and data set pairs and 
measuring the classification accuracy at various acti-
vation and weight error rates.

Baseline results establish the inherent extent of 
the fault tolerance of the deep learning models with 
no embedded error resilience mechanism. DNNs 

with median filters check activations prior to the 
execution of each layer through filtering operations 
in the channel dimension. We implement the pro-
posed median filtering technique with two distinct 
filter sizes to measure its effectiveness at different 
design points. We construct fine-grained invariants in 
neural network models through the local magnitude 
comparison method (Figure 3) and perform anom-
aly suppression on erroneous variables by dropping 
outright or clipping their magnitude to the expected 
range. Finally, we construct two triple modular 
redundancy (TMR) techniques for comparison. The 
target neural network is replicated three times, each 
instance executed independently to deliver its own 
classification, and the final decision is made through 
majority voting in a model-based TMR technique. In 
layer-based TMR, each neuron/filter is triplicated, 
and the neuron/filter output is produced through 
majority voting at each layer before proceeding with 
the execution of the subsequent layer.

Our experimental analysis validates our expec-
tations that deep learning models are prone to a 
noticeable accuracy drop even at low error rates 
when suffering large-magnitude error deviations. We 

Figure 6. Error resilience of DNNs under different fault tolerance methods.
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observe that model-based TMR is often ineffective 
in boosting neural network resilience over baseline 
models. Layer-based TMR, on the other hand, is 
shown to be effective as each bit error is squashed 
immediately at each layer in this scheme before it 
has had a chance to propagate to neural network 
outputs. However, the large overheads of layer-based 
TMR may prove inhibitive in practical applications.

The proposed novel techniques attained through 
median filtering and fine-grained invariants coupled 
with error suppression (i.e., dropping and clipping) 
can provide extensive bit error resilience in the tar-
get deep learning models even when afflicted by 
thousands of bit errors scattered throughout the 
model. The proposed methods operate on activa-
tions and offer resilience against up to 10,000 times 
higher activation error rates; an indirect impact on 
weight error resilience to withstand up to 50 times 
higher error rates can be furthermore enjoyed as the 
propagation of weight errors in a particular layer can 
still be suppressed through the activation checks in 
the subsequent layer. Weight error resilience can be 
further bumped up by performing invariant injection 
and error suppression operations on the weights 
directly prior to each layer’s execution. We observe 
that neural network error resilience characteristics 
obtained through the proposed novel techniques 
are even superior to layer-based TMR despite incur-
ring no additional information redundancy.

Discussion
The novel techniques we outline focus primarily 

on the data path and buffers where the majority of 
hardware resources are allocated, and the cost of 
delivering functional safety through conventional 
fault tolerance methods proves to be exceedingly 
high. While control path integrity is just as impor-
tant, the inordinate cost of traditional techniques 
can be easily borne for the small footprint of con-
trol circuitry in deep learning accelerators that may 
necessitate absolute resilience.

We attain strong error resilience and competitive 
accuracy through the inherent flexibility and redun-
dancy of neural networks. Neural networks embed 
redundancy in various dimensions, and the redun-
dancy types that cannot be effectively squeezed 
through model compression can be utilized for 
boosting error resilience at no additional cost. Our 
preliminary investigations indicate that model com-
pression methods such as pruning can be applied 

to the proposed models without impacting their out-
standing error resilience characteristics. On the other 
hand, introduced invariants can lead to dependen-
cies across neighboring variables, which need to be 
taken into consideration during the model compres-
sion process. Future investigations will focus on the 
effective deployment of model compression tech-
niques on the proposed models.

While the outlined analysis focuses on convolu-
tional and fully connected layers, the proposed tech-
niques are expected to generalize to a wide range of 
DNNs, such as recurrent models and other emerging 
neural network architectures.

Overall, the computational characteristics of neu-
ral networks can enable significant breakthroughs 
for the error resilience problem in deep learning 
hardware, delivering highly effective solutions at 
imperceptible overheads.

The error resilience of DNNs can be boosted 
noticeably by restricting and containing the numer-
ical contribution of the errors without necessitating 
explicit error correction steps. The proposed novel 
error detection and remediation techniques can 
complement each other seamlessly to tackle errors 
with high precision, while neither incurring addi-
tional information redundancy nor having a noticea-
ble impact on the error-free classification accuracy. 
The proposed approach innovatively redefines the 
error resilience problem in the context of DNNs, 
thus unlocking effective opportunities for efficiently 
embedding functional safety into the next genera-
tion of machine intelligence hardware.� 
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Fault-Tolerant Neural 
Network Accelerators 
With Selective TMR 

 The fast growth of novel embedded heter-
ogeneous architectures in the last decade opened 
doors to machine learning acceleration targeting 
various fields and applications, some of which are 
categorized as safety-critical, such as self-driving 
cars, flight-control systems, or aerospace. The super-
vision and diagnosis of faults in these kinds of appli-
cations are of great importance to prevent malfunc-
tions or total system failure, hence requiring a high 
level of reliability.

A common approach to achieving fault tolerance 
in hardware is the use of triple modular redundancy 
(TMR), performing a majority vote on triplicated 
modules. However, machine-learning accelerators 
are extremely power- and resource-hungry, making 
TMR an undesirable solution, due to a 200% hardware 
overhead. It should also be considered that not all por-
tions of a neural network (NN) have the same effect 
on the overall accuracy, thus exploring in detail the 

inherent feature of NNs 
enables more fine-grained 
approaches. In this work, 
we explore applying 
redundancy only to the 
most critical elements 
within the NN hardware 

accelerator, opening a new design space exploration 
to reduce resource usage while offering a certain 
degree of fault tolerance.

This article presents selective TMR (STMR), an 
automated tool to export fault-tolerant NNs using 
field-programmable gate array (FPGA)-based hard-
ware. The main features of this tool are:

•	 It applies redundancy to computations that, in the 
presence of single faults, have a greater impact on 
the overall accuracy of the network, achieving a 
fault tolerance for a highly reduced hardware cost.

•	 It preserves the throughput of the NN accelerator, 
with a negligible increase in latency.

•	 It offers configurable fault tolerance by setting a 
minimum requirement of accuracy in the pres-
ence of a single fault, providing control over the 
degree of redundancy applied to the NN.

•	 It provides layer-level information on single-fault 
detection to the host, for further fault correction 
at the system level (e.g., scrubbing).

The following sections introduce related work 
and required background leading to an STMR 
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model, an explanation of the tool flow, and detailed 
analysis based on a use case.

Related work
Prior works aiming to improve the reliability of 

NN inference fall into the following categories:

1)	 Hardware redundancy, such as TMR.

2)	 Numerical redundancy, such as error correc-
tion code (ECC) and algorithm-based fault 
tolerance (ABFT).

3)	 NN training for robustness, such as fault-
aware training (FAT) [1].

These approaches are often used in combination 
to create a reliable system. The approach described 
in this article is a variant on 1), while presenting 
results when 3) is also applied. However, before dis-
cussing prior works’ methods to improve the robust-
ness of NN accelerators, it is worthwhile to review 
works that attempt to analyze the reliability of NNs 
without any particular fault mitigation techniques 
being applied.

In particular, Gambardella et al. [2] presented an 
error injection methodology to evaluate fault toler-
ance in NNs. They observed that single faults onto 
single neurons at specific locations in convolutional 
layers can cause accuracy drops of up to 10%. To 
mitigate this, the authors propose an STMR scheme 
and provide an analysis of potential resultant relia-
bility and hardware cost based on models. Similarly, 
Libano et al. [3] explored how the reliability of NN 
accelerators changes with various network and 
accelerator parameters. They show that reliability 
improves with reduced data precision and increased 
parallelism. More recently, Xu et al. [4] analyzed 
the probability of system exceptions of FPGA-based 
accelerators due to hardware faults. The authors 
found that system exceptions can dominate the 
reliability of the system and evaluated full TMR as 
a potential solution. In addition to the works above, 
Brosser et al. [5] showed that periodic scrubbing 
(reprogramming) is vitally important when FPGAs 
are deployed in low earth orbit (LEO) or geostation-
ary earth orbit (GEO) satellites.

Closer to this work, several works have pro-
posed methods to apply full or partial TMR to NN 
accelerators. For example, Wang et al. [6] imple-
mented full TMR on a custom lightweight con-
volutional NN (CNN) topology. Their approach 
significantly improved the error rate (33.59% error 

rate reduction) although they incur a large increase 
in hardware resources. As an example of partial 
TMR, Libano et al. [7] proposed selective hardening, 
where they triplicated the most sensitive layers and 
validated the approach by means of neutron radia-
tion testing, showing high fault-masking (40%) with 
marginal hardware overhead (8%). SHIELDeNN [8] 
also proposed a framework applying partial TMR to 
the weights within sensitive NN layers. The authors 
showed an improvement in error resilience while 
incurring only a little hardware overhead. Finally, 
Spyrou et al. [9] employed both partial TMR (to the 
output layer of the NN) and a training technique to 
improve the robustness of spiking NNs (SNNs).

Zhao et al. [10] is an example of ABFT. The 
authors proposed four different ABFT schemes that 
protect against single-event effects (SEEs) in con-
volutional layers. Together, the schemes provide 
effective fault tolerance, while incurring little (8%) 
runtime overhead.

In this work, we propose fault-tolerant NN accel-
erators leveraging parallelism using FPGAs for 
acceleration (as per suggested in [3]), targeting 
convolutional layers (as [10]), targeting reduced 
hardware overhead (as suggested in [4] and [6]), 
and applying partial TMR as in [7]–[9], but with a 
finer-grained approach to selective hardening or 
SHIELDeNN, as we analyze and triplicate individual 
channels within a layer, instead of the entire layer. 
This work could be considered to be an extension 
of Gambardella et al. [2], developing the ideas pro-
posed in the work into a tool, which generates relia-
ble accelerators.

Background
STMR builds on three main prior works: 

1) FINN [11]; 2) error injection [2]; and 3) FAT [1]. 
In particular, we utilize the error injection campaign 
proposed by Gambardella et al. [2] with the specific 
aim to identify sensitive computations within the 
NN. We also extend FINN to support detecting and 
correcting single faults on selected output channels. 
Finally, we leverage FAT to compare the effective-
ness of STMR on quantized NNs (QNNs) which are 
trained to be resilient to faults to networks trained 
with standard training (SAT) techniques.

FINN framework
FINN [11] is an end-to-end framework that enables 

the deployment of QNNs into FPGA-based hardware 
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platforms, especially focusing on extremely reduced 
precisions down to binary NNs (BNNs), leveraging 
heavily quantized weights and activations enabling 
their storage into on-chip memory and reducing the 
compute hardware cost. The architecture of machine 
learning accelerators built using FINN consists of a 
sequence of layers with dedicated processing ele-
ments (PEs), offering a high level of configurability 
to target-specific throughput for a submicrosecond 
latency. The FINN toolchain allows generating data-
flow architectures configured for different low preci-
sions, network topologies, or data sets.

For the scope of STMR, it is important to remark 
that FINN-based accelerators can be deployed onto 
FPGAs without an accompanying CPU, thus requir-
ing redundancy to be implemented during inference 
rather than at the algorithmic level. For TMR imple-
mentation in FINN, special attention is put on the 
structure of the convolutional layer.

Each convolutional layer in FINN receives an input 
feature map (IFM) and produces an output feature 
map (OFM). The IFM is first transformed into an input 
matrix by a sliding window unit (SWU), which lowers 
the convolution to a matrix multiplication on the fly, by 
means of im2col. From here, the matrix multiplication 
is mapped to the main computational primitive in FINN: 
the matrix-vector threshold unit (MVTU). The MVTU 
calculates matrix-vector products, and the subsequent 
quantized activations by means of thresholding.

The OFM number of channels (COFM) for each 
layer is determined by the number of filters used 
during convolution, and the level of parallelism to 
compute simultaneous OFM channels is determined 
by the number of PEs utilized within the layer. If 
the number of PEs, NPE, is less than the number of 
OFM channels, that is, NPE < COFM, then each PE com-
putes multiple output channels. The amount of OFM 
channels each PE computes is known as the neuron 
folding factor and is given by Fn = COFM/NPE, where 
COFM%NPE = 0. The specific channels that the ith PE in 
the MVTU computes are given by

        CPEi  =  (i + j N PE) j = 0,..., Fn ¯ 1
.� (1)

This property plays an important role in determin-
ing the schedule described in the following section.

Error injection methodology
Error injection is crucial to understanding how the 

NN behaves in the presence of faults and how differ-
ent faults impact the overall accuracy. Gambardella 

et al. [2] presented an error injection methodology 
to evaluate the fault tolerance of NNs. This method 
consists of altering threshold values utilized in the 
MVTU at run time and injecting activation values in 
the next layer. For instance, if thresholds are set to 
a maximum or minimum value for a single channel 
of a layer in a BNN, the corresponding activations 
are forced to a permanent value of 0 or 1. Evaluating 
different channels and layers in each iteration, the 
overall accuracy of the network is computed and 
reported, obtaining information on the sensitivity 
against single faults for all targeted error models. It is 
worth noticing how the sensitivity analysis is specific 
to a trained NN, and a new evaluation is needed if 
the same NN is retrained or if the topology changed. 
This error injection methodology was adopted to 
apply the channel stuck at the error model to obtain 
channel fault tolerance analysis reports. For those 
readers who wish to further understand the error 
model and error injection framework, we refer them 
to Gambardella et al. [2].

FAT for reliable inference
The STMR approach presented in this article is 

independent of the process of training NNs. How-
ever, the selection of the most critical portion of the 
NN to be triplicated heavily depends on the trained 
parameters and the results of the error injection.

In this context, the FAT methodology proposed by 
Zahid et al. [1] introduces a new error injection layer 
component in the network definition, enabling error 
models to be utilized as a part of the training pro-
cess. The use of FAT for training improves the resil-
ience of the network, proving greater tolerance than 
networks trained with SAT techniques for different 
error models and precisions, with higher error-free 
accuracy and higher minimum accuracy in the pres-
ence of faults. In this article, the use-case shown con-
siders the utilization of trained parameters obtained 
using both SAT and FAT methodologies, to assess 
the implications of the training methodology to the 
hardware resource usage of the STMR accelerator. 
However, FAT is not a requirement for STMR, but 
rather an additional resource to seek fault tolerance.

STMR modeling

TMR mapping
The mapping of convolution computations to the 

MVTU in FINN is output stationery, meaning that each 
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PE computes all outputs on one or more entire chan-
nels in an OFM. In the case where a PE calculates 
more than one output channel, it is imperative that 
each triplicated channel in a triplet is calculated on 
a separate PE, to avoid a single point of failure. This 
is achieved in STMR by ensuring that the replicated 
channels in the triplet are each mapped to a unique 
PE, assuming there are three or more PEs. Specifically, 
this is achieved by placing the replicated channels 
immediately after the position of the original channel. 
This is shown in Figure 1a, where three of the six chan-
nels (in positions 0, 2, and 4) are identified as being 
sensitive to faults. After STMR mapping, the number of 
channels increases to 12, where channel 0 turns into 
a triplet of channels in positions 0, 1, and 2; channel 2 
into a triplet with positions 4, 5, and 6; and channel 4 
into a triplet with positions 8, 9, and 10.

TMR majority vote
The majority vote is implemented by an additional 

hardware component placed right after the MVTU 
or convolutional layer in FINN, named TMR check 
(TMRC). TMRC receives an OFM with triplicated chan-
nels as input and outputs an OFM with valid results, 
as well as providing status information to the host 
through two flags: 1) an error-detected flag and 2) an 
error-corrected flag. In essence, this unit performs a 
comparison for each triplet. Three possible scenarios 
could occur during the process, each case represented 
in Figure 1b with triplets T1, T2, and T3, respectively:

•	 All three channels are identical. In this situation, 
the result is assumed as valid and forwarded to 
the output, with no errors flagged.

•	 Two channels are identical and one has a dif-
ferent value. In this situation, the value present 
twice is considered valid and forwarded to the 
output, thus detecting and tolerating the single 
error. The error-detected and error-corrected 
flags are also raised.

•	 All three channels are different. In this situa-
tion, the result of the first channel is selected by 
default as valid and forwarded to the output. The 
error-detected flag is raised, but the error-cor-
rected flag is not.

Additionally, TMRC is configurable to define 
input and activation precisions, the number of trip-
licated channels, OFM dimensions, or redundancy 
factor, assumed as three in this work.

STMR tool flow
The STMR tool aims to automatically generate a 

hardware accelerator that achieves the desired level 
of single-fault tolerance.

To do so, our codesign flow first triplicates param-
eters of explored sensitive channels of each layer 
(software), second mapping these, leveraging high-
level synthesis (HLS) for the model transformations 
(hardware). This redefines the NN model, with the 
advantage of computation-level redundancy for a 
low cost in resources.

As illustrated in Figure 2, the tool requires as input:

•	 Trained parameters, including the complete NN 
topology definition. It should be noted how there 
is no restriction on the training methodology 
adopted, and training is completely independent 
of STMR implementation.

Figure 1. STMR mapping and majority vote. (a) TMR PE mapping: critical channels 
0, 2, and 4 are triplicated, placing replicas in a consecutive manner. Red 
represents critical channels. (b) STMR majority vote for each triplet (T1, T2, T3). 
Green represents expected values (same for each triplet), whereas orange and 
blue represent non-expected values (possibly due to faults).
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•	 A sensitivity report, as a result of the error injec-
tion campaign described in the previous section 
performed on the target NN.

•	 A minimum accuracy requirement in the pres-
ence of single faults, which the user can specify 
depending on the target fault tolerance require-
ment. Redundancy is regulated as a consequence 
of minimum accuracy choice, which aims to act 
as a fault-tolerance guarantee, limited by the 
FPGA capacity.

Given the inputs, an automated process exports 
the fault-tolerant NN accelerator, relying on a series 
of Python scripts included in FINN and the HLS 
library which leverage the Xilinx toolchain to build 
and produce the final hardware accelerator. Figure 2 
illustrates the steps of this process, which starts with 
a Python-based three-step procedure:

•	 Analysis of the sensitivity report obtained from the 
error injection stage, selecting which channels of 
each layer will be triplicated based on the required 
minimum accuracy in the presence of faults.

•	 Validation of the parallelism, namely the number 
of PEs used for each layer of the network, ensures 
the TMR mapping described in the previous sec-
tion is viable for the list of critical channels previ-
ously selected.

•	 Automatic export of the weights and parameters, 
including the triplication of the values corre-
sponding to each triplicated channel.

The process continues with the generation of the 
QNN accelerator itself. The FINN HLS components 
are generated for all layers within the network, with 
some layers augmented with triplicated channels 
and a TMRC layer (described in the previous sec-
tion) placed after them. Once the HLS is generated 
for the fault-tolerant network, Vivado HLS synthe-
sizes it, exporting an intellectual property (IP) block 
which can be integrated and built within a block 
design in Vivado.

Fault-tolerant networks with STMR
The STMR tool has been tested and validated 

on a set of QNNs inspired by BinaryNet [12], which 
consists of six convolutional layers, two max pool 
layers, and three fully connected layers, is called 
CNV and first proposed by Umuroglu et al. [11]. 
The CNNs have been trained on the CIFAR-10 data 
set [13] to classify images among 10 classes with 

reduced precisions and are referred to as CNVW1A1, 
CNVW1A2, or CNVW2A2, where the number after W 
and A are the bitwidths of weights and activations, 
respectively.

STMR use-case
Let us consider an SAT-trained CNVW1A1 network 

whose computed error-free accuracy is 84.46%. The 
results of the error injection campaign performed 
over this network to analyze its fault sensitivity are 
collected in Table 1, where clearly the convolu-
tional layers (0–5) experience a higher accuracy 
drop when compared to the fully connected layers 
(6 and 7). More specifically, layer 1 experiences a 
minimum accuracy of 59.28% when a single channel 
was stuck at 1.

Setting the STMR minimum accuracy requirement 
to 83% and using the automated flow to generate a 
fault-tolerant accelerator, it requires 16, 50, 92, 56, 
and 7 triplicated channels in the first five convolu-
tional layers. This leads to a total of 221 triplications 
(≈12% of the total channels in the network) and the 
implementation of one TMRC layer per each convo-
lutional layer containing redundancy.

The same CNVW1A1 network trained using FAT 
gives a computed error-free accuracy of 84.8%. The 
minimum accuracy observed during error injection 
is 81.08%. Targeting 83% minimum accuracy, the 
STMR tool exports a fault-tolerant NN with only 1, 36, 

Figure 2. General overview of STMR tool flow.
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2, and 6 triplicated channels in the first four convolu-
tional layers, respectively, for a total of 45 triplicated 
channels (≈2% of the total).

These results show a greater benefit when train-
ing the network using FAT, reducing considerably 
the redundancy required for the same minimum 
accuracy target.

Identical steps were followed to perform error 
injection and export CNV networks with other accu-
racy requirements and precisions, whose cost in 
hardware will be addressed in the following sections.

Validation, throughput, and latency
To validate the functionality of STMR, an error 

injection campaign was performed into STMR-ex-
ported networks. The campaign consists of inject-
ing errors to each individual channel of each layer, 
including the triplicated ones which will be treated 
exactly like the original. The campaign aims at con-
firming that the triplication performed by the STMR 
tool and implemented in the hardware accelerator 
is able to guarantee error-free accuracy in the pres-
ence of faults in one of the triplicated channels. 
When injecting single faults into such channels, the 
majority vote will tolerate the fault and the com-
puted accuracy will be equal to the error-free accu-
racy, while the error detection and error correction 
flags will be raised by the hardware accelerator.

For instance, the result of this error injection cam-
paign for the network example in the previous sec-
tion, which had implemented STMR for a minimum 
accuracy of 83%, is shown in Table 1, where, com-
pared to the error injection results, clearly the mini-
mum accuracy for the first five convolutional layers 

is kept above the 83% threshold, thus validating the 
STMR implementation.

The parallelism of STMR networks cannot be 
exactly preserved, as the number of PEs varies 
depending on the number of triplications and folding 
requirements as explained in the previous section. 
However, having control over the parallelism for 
each convolutional layer for the previous example, a 
throughput of ≈21 k frames/s is preserved for both SAT 
and FAT trained networks, while leveraging the ben-
efits of STMR. Latency experiences a slight increase 
due to the inclusion of TMRC layers in the network. 
This increase is negligible, as TMRC has been fully 
unrolled to perform majority vote for one pixel in 
one clock cycle. In the case of SAT-STMR-CNVW1A1, 
the addition of 221 triplications produces a latency 
increase from 142.3 to 145.2 µs, whereas the addition 
of 45 triplications for the FAT-STMRCNVW1A1 case 
causes an increase from 142.3 to 143.3 µs.

Hardware resource analysis
Area savings of STMR is one of the key reasons 

and motivations of this research, enabling design-
ers to explore the design space of hardware usage 
versus fault tolerance. The hardware usage increase 
when applying STMR to a FINN accelerator can be 
divided into two main components: 1) majority voter 
(TMRC) and 2) increased PEs to compute triplicated 
channels. TMRC only requires look-up tables (LUTs) 
and flip-flops (FFs), with resource usage linearly 
dependent on activation precision and number of 
OFM channels (including triplications).

In all our examples, the resource usage of 
TMRC was less than <7.5% of the resources of the 

 
Table 1. Error injection campaign and STMR validation for 83% minimum accuracy.
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corresponding MVTU. Compared to the resource 
overhead of triplicating several OFM channels, this 
is relatively low.

The majority of hardware cost increase depends 
on the compute part as well as BRAM usage increase 
due to partial triplication of parameters. Consider-
ing as baseline the CNVW1A1 example, LUTs, FFs, 
and 36-kb BRAM utilization are 45.8 k, 60.6 k, and 
147.5, respectively. Hence, a full TMR solution would 
require ≥137.4 k LUTs, ≥181.9 k FFs, and ≥442.5 
BRAMs. However, if we leverage the STMR tool to 
export a fault-tolerant CNVW1A1 network trained 
using SAT targeting a minimum accuracy of 83% in 
the presence of faults, resource utilization is 71.5 k 
LUTs, 91.9 k FFs, and 210.5 BRAMs. This means an 
additional cost of 56% in LUTs, compared to the the-
oretical ≥200% for full TMR, while guaranteeing a 
maximum drop in accuracy of <1.5%, increasing by 
23.72% the minimum accuracy under single faults.

When using the FAT trained NN with the same 
target accuracy in the presence of faults, we experi-
enced a resource utilization of 55.2 k LUTs and 70.5 k 
FFs, resulting in increased utilization of 21% in LUTs, 
compared to the theoretical ≥200% for full TMR and 
56% for SAT-STMR. Additionally, optimization of 
BRAM utilization mapped to LUTs used as memory 
is also leveraged by the synthesis tools, as in this case 
only 147.5 BRAMs were utilized.

The full set of results is collected in Table 2, pre-
senting the overall hardware cost for CNVW1A1, 
CNVW1A2, and CNVW2A2 accelerators imple-
mented with STMR. The target accuracy drop in 
the presence of single faults has been set to be less 
than 2% for all precisions, and the results have been 

reported using both SAT and FAT training method-
ologies. The reader can observe great area savings 
when comparing the hardware cost of a full TMR 
approach versus the STMR solution proposed. Also, 
it can be observed that the error-free accuracy and 
hardware cost increase with higher precisions.

The complete design space of hardware cost ver-
sus worst-case classification error (i.e., 1—minimum 
accuracy under a single fault) against utilization in 
LUTs is shown in Figure 3, where full TMR solutions 
marked in the graph clearly offer the minimum worst-
case error, but for the maximum hardware cost, and 
solutions without redundancy show a high worst 
error case which does not guarantee high levels of 
accuracy in the presence of faults. The intermediate 
results define the design space for STMR fault-toler-
ant solutions considering different minimum accu-
racy requirements, where the hardware cost is highly 
reduced. The most attractive solutions shown in this 
figure respond to the intermediate data points for 
FATSTMR-CNVW1A1, FAT-STMR-CNVW1A2, and 
FAT-STMRCNVW2A2 generated networks, being all 
Pareto dominant to the SAT counterparts.

In this work, we presented STMR, an automated 
tool to generate fault-tolerant NNs for machine-learn-
ing accelerators in FPGAs. It offers flexibility to 
tradeoff between fault tolerance and hardware cost 
by applying TMR only to critical channels of the NN 
layers, previously identified by means of error injec-
tion. The fault-tolerant accelerators automatically 
generated preserve their throughput and incur in 
very low latency increase. Additionally, experiments 
show how FAT in conjunction with STMR provides 
higher benefits than SAT-trained NNs.

 
Table 2. STMR hardware cost when targeting <2% accuracy drop and throughput of 21 k frames/s.
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For future work, we plan to: validate the STMR 
approach under high-radiation environments; 
develop robust training methods that are specific to 
STMR, in particular, methods that extend FAT to sup-
port a small number of outliers; and finally, extend 
the STMR tool flow to support more NN layer types, 
such as long short-term memories (LSTMs).� 
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API-Based Hardware 
Fault Simulation for DNN 
Accelerators

 Continued transistor scaling results in lower 
operating voltages that enable increased levels of inte-
gration within a given silicon area footprint. However, 
it also entails an increase in the likelihood of unin-
tended bit flips and data corruption at the device level.

The rate of these faults per computational 
resource requires special consideration when

•	 combining many computational resources (e.g., 
supercomputers and server farms) and

•	 executing applications with high dependability 
requirements, such as in automotive (requir-
ing failure rates below 10−8 failures/hour for 
safety-critical functions). 

To reduce the likelihood of data corruption, hard-
ware designers identify high-risk components and 
add protection circuitry, such as parity checks and 
error correction codes (ECCs). However, protection 
circuitry requires die area and increases power con-
sumption which could otherwise be used to increase 

performance. The more 

comprehensive the pro-

tection, the higher the 

error detection or correc-

tion capabilities, but the 

more area it occupies.

A balance must be 

found in the tradeoff between an integrated circuit’s 

dependability and performance. Experiments indicate 

that deep neural networks (DNNs) are more resilient to 

hardware faults than other programs.1 In this context, 

special “DNN accelerators” have been designed for effi-

cient DNN execution [3]. These may require lower than 

usual levels of hardware protection while satisfying the 

same dependability targets for DNN applications.

So what is the probability of output failure due to 

hardware faults for DNNs running on these DNN accel-

erators? In this work, we present a novel method for 

estimating this probability. Our approach works by 

expanding the primitives of application program inter-

faces (APIs) used by DNNs with hardware-specific fault 

simulations: First, the original primitive is run, then the 

output is modified in the way it would be corrupted due 

to faults in the target hardware. The actual hardware is 

not required. By executing a DNN with this modified 

API simulating hardware faults, statistics may be gen-

erated on output failures. Unlike existing approaches, 

our approach uniquely combines.

1Compare bit error rate thresholds found in [1] with requirements in [2].
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•	 Accuracy: The actual workload is run on an accu-

rate hardware fault simulation.

•	 Speed: The simulation time is not constrained 

by the lack of nor the speed of hardware to be 

simulated.

•	 Scale: By sharing the modified API implementa-

tion, accurate dependability estimates for specific 

workloads may be generated without hardware/

algorithmic knowledge.

DNN accelerators
Computing platforms tailored specifically to the 

needs of DNNs have become more common over 

the past years. Prominent examples are Google Ten-

sor Processing Units, Nvidia Tensor Cores, Intel Xeon 

Tile Matrix Multiply Units, and Intel Xe HPC graphics 

processing units (GPUs) [3].

By far, most computer operations carried out by 

DNNs are spent on matrix multiplication: In DNN 

terminology, the fully connected and convolution 

layers are calculated by algorithms using matrix 

multiplication.2 For DNNs such as ResNet-50, these 

multiplications involve large matrices with dimen-

sions, n, in the thousands. Matrix multiplication is, 

approximately, an O(n3) operation. All other com-

monly used DNN operations are O(n) operations. 

Consequently, accelerators geared toward DNNs 

specifically aim to accelerate large matrix multipli-

cations. Most of them

•	 adopt an architecture that consists of systolic 

arrays (SAs) operating in parallel and

•	 feature a memory hierarchy designed to maxi-

mize the reuse of data cached close to the SAs,

2Chetlur et al. [4] explain how to convert convolution to matrix multiplication.

where each SA computes small matrix-multiply-ac-
cumulate (MMA) operations, D = A • B + C.

We will refer to this class of accelerators as “DNN 
accelerators.” The typical architecture of a DNN 
accelerator is shown in Figure 1. The white blocks 
inside the SA represent multiply-accumulate-fused 
(MAF) units, performing the actual calculations.

When designing DNN accelerators, the relative 
robustness of DNNs with reference to hardware 
faults is taken advantage of by optimizing the level of 
hardware protection for performance gains. In this 
context, SAs and their caches present particularly 
good opportunities for such gains.

Protection circuitry for large caches (L4–L2 in 
Figure 1) requires relatively little die area. In com-
parison, the SA caches (L1 in Figure 1) are very small 
and there may be thousands of them—here, protec-
tion carries a high-performance cost. Analogously, 
while an ALU on the “slice level” in Figure 1 may be 
implemented with hardware protection, doing the 
same for each of the dozens of MAF units comprising 
a single SA places a large burden on performance.

Related work
Many methods of estimating the likelihood of pro-

gram failure due to hardware faults exist. Below, we 
present the most prominent ones.

Statistical fault injection
In statistical fault injection, faults are injected at 

program runtime. These faults may be injected at 
different system abstraction levels (gate, microar-
chitecture, and so on). In general, lower-level fault 
injection provides more accurate results but may not 
be scalable in practice due to long execution times, 
while higher-level fault injection may run much 
faster, but at the price of lower accuracy [5].

Figure 1. Typical architecture of a DNN accelerator. Memory hierarchy depth (L4–L1) 
and the number of units on each level (4, 8, 16) chosen arbitrarily.
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Hierarchical simulations have been applied to 
address this tradeoff by simulating different parts 
of the system at different abstraction levels so that 
required details are modeled only for the parts of 
interest [5]. The proposed method in this work fol-
lows a similar concept as hierarchical simulations.

Vulnerability factors
In the vulnerability factor approach, simulat-

ing lower system abstraction levels individually for 
each program is avoided by estimating the fraction 
of faults affecting a given level from the next lower 
level. Frequently used factors are the hardware vul-
nerability factor (HVF) [6], the program vulnera-
bility factor (PVF) [7], and the timing vulnerability 
factor (TVF) [8]. The overall failure rate for a pro-
gram, P, is then estimated by (1), where F denotes 
the fraction of time in a particular use condition, uc, 
itself dependent on the clock frequency, fclk

Failure Rate Fault-Rate

TVF

clk
circuits

( ) ,P F fuc P

uc

c

c

u

≈ ( ) ⋅

⋅

∑ ∑
∈

cc c uc c uc c P, , , ,⋅ ⋅HVF PVF� (1)

However, not much is gained if PVFuc,c,P has to 
be estimated individually for each DNN, each use 
condition, and each circuit.3 As will be shown in the 
upcoming section, hierarchical fault injection simu-
lations not only deliver more accuracy, but may be 
implemented in a general, scalable fashion.

Evaluating vulnerability of DNN-based 
applications

To understand the vulnerability of DNN-based 
applications, many existing works (e.g., [1] and [9]) 
adopt application-level fault injection by, say, inject-
ing faults directly into the DNN model (e.g., weights). 
However, this approach does not reflect the actual 
impact of the underlying platform on which the DNN 
is executed. As will be shown in the upcoming sec-
tion, microarchitectural details of DNN accelerator 
designs have a profound impact on how hardware 
faults propagate to the level of the DNN model.

Problem statement
The task at hand is a risk assessment for DNNs 

when facing hardware faults on DNN accelerators. 

3For many central processing unit (CPU) applications, the approximation PVFuc,c,p 
≈ 1 may be used, making this approach useful for rough estimates. However, in this 
work, we are particularly interested in the PVFuc,c,p << 1 property of DNNs.

.

Generally, given a program, p, the risk of a hardware 
fault, f, causing failure with severity ∈ {0 = none, 
1, ...}, may be defined as

	 risk severity severity= ( ) ⋅Pr f p, � (2)

commonly known as the risk matrix approach, where 
shorthand Pr denotes probability.

The probability on the right-hand side of (2) may 
be separated into two parts

	 Pr Pr Pr
exposure cond

f p f p f p, ,severity severity( ) = ( ) ⋅ ( )��� ��
iitional failure

� ���� ����

� (3)

The “exposure probability” measures the likeli-
hood of the fault, f, occurring while a given program, 
p, is exposed to it. For instance, if a program makes 
no use of floats, and the hardware fault considered is 
a fault in an floating-point unit (FPU), the program’s 
exposure probability to that fault equals zero.

The “conditional failure probability” measures 
the likelihood of the program, p, failing with sever-
ity, conditional on it being exposed to a fault, f. For 
instance, if the program’s output is a single-pre-
cision floating-point value and the fault only ever 
flips the least significant bit of that value, the rel-
ative output error equals 2−23: For most programs, 
this error will not be considered program failure, so 
the associated conditional failure probability would 
equal zero.

As calculating the risk using (2) becomes trivial 
once the failure probability (3) has been estimated, 
moving forward, we only consider the latter problem.

Novel API-based fault simulation
Numerical programs, in particular, DNNs, rely on 

standards-based APIs to implement mathematical 
operations such as matrix multiplication. The actual 
operation is usually implemented by the hardware 
manufacturer, requiring intimate knowledge of the 
accelerator’s memory hierarchy, instruction pipe-
lining, and so on. In the proposed approach, hard-
ware fault simulations are implemented into these 
APIs for the very same reason. Also, fault simulations 
thus implemented become available immediately to 
every program linking the given API.

.
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The proposed API-based fault simulation for a 
given API comprises the following steps: For each 
API operation executed on the accelerator

1)	 Model of computation (MoC): Develop an MoC, 
modeling how the operation is executed on the 
actual hardware.

2)	 Fault MoC-scope: For the hardware fault under 
consideration, find the execution steps affected 
in the MoC by one such fault.

3)	 API fault simulation: Develop a fault simulation for 
these execution steps making as much use of the 
API operation’s (efficiently computed) output as 
possible and including the simulation with the 
API operation.

Without loss of generality, we provide a sample 
application with a simplified MoC, following the steps 
outlined above, to illustrate the proposed method.

Simplified model of computation
We implement the fictitious general matrix multi-

ply API function GEMM16 (A, B) = A16 × 16 • B16 × 16, on 
a DNN accelerator featuring four SAs. Each SA itself 
may execute an MMA instruction, A4 × 4 • B4 × 4 + C4 × 4. 
The generalization to arbitrary dimensions and the 
number of SAs is straightforward.

The multiplication is depicted in Figure 2. The 16 
submatrices Cmn

4 × 4 may be calculated by

	 C A Bmn mk

k

k

kn
4 4 4 4

0

4
4 4× ×

=

<

×
=∑ � (4).

The GEMM16 algorithm using MMA instructions 
is given by Algorithm 1. It divides C into quadrants, 
each assigned one SA (see Figure 2).

Unrolling the m, n loops for the upper right quad-
rant we get

1  for k = 0 to 3 do
2	 C A B Ck k02 1 0 2 02= ( )MMA , ,

3	 C A B Ck k03 1 0 3 03= ( )MMA , ,

4	 C A B Ck k12 1 1 2 12= ( )MMA , ,

5	 C A B Ck k13 1 1 3 13= ( )MMA , , .
Notice that each k-iteration requires only four 

different A and B inputs, namely A0k, A1k, Bk2, and 
Bk3. Now, consider the memory hierarchy in Figure 
1: For L1A (L1B) large enough to cache one (two) 
4 × 4-submatrices, data requests to L2 for these inputs 
are halved.4 Moving forward we assume just that.

Simulating transient L1 cache faults
Suppose one of the L1 caches of the upper right 

quadrant’s SA experiences a transient bit-flip—what 
is the fault’s MoC-scope? From the unrolled loop 
above, we see that any such fault is confined to one 
k-iteration (data is not reused across k-iterations) 
and affects at most two Cmn (e.g., if B12 is corrupted 
in line 2, it affects C02 and then C12 in line 4).

Next, we develop the API fault simulation. In the 
unrolled loop above, suppose the fault occurs at iter-
ation k = 2: line 4 and has the effect B B23 23� � .  The 
corresponding effect on the output, C C� �,  reads

	  � �C C A B A B12 12 1 12 23 1 12 230 0= − +MMA MMA( , , ) ( , , ) �

As C12 is returned by the regular API operation, we 
do not need to calculate it ourselves but can utilize 

4For real-world DNN accelerators with M × K × N-MMA: If L1A caches a single 
M × K-submatrix and L1B caches Lb K × N-submatrices, each SA may be assigned 
Lb × Lb M × N-submatrices in the output to reduce L2-requests for A, B by a factor of 
1/Lb using Algorithm 1.

.

Figure 2. Matrix multiplication on DNN 
accelerators.

Algorithm 1. GEMM16: returns A16 × 16 • B16 × 16 using 
four SAs capable of A4 × 4 • B4 × 4 + C4 × 4-MMA
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the high-performance API implementation as input 
to the simulation.

More generally, the effect of a cache fault occur-
ring in SA, at iteration (k, m, n) ∈ [0, 3] × [0, 1] × 
[0, 1] and cache index X ∈ {A, B0, B1, C}, may be 
modeled by Algorithm 2.5

Note that in Algorithm 2, timing matters: If a fault 
in L1A happens at n = 0, then two of C’s 4 × 4-subma-
trices are affected, otherwise only one. Similarly, if 
L1B suffers a fault corrupting B0 at n = m = 1, C will 
not be affected.

The API hardware fault simulation is listed in 
Algorithm 3. To inject one random fault into a pro-
gram making multiple uses of GEMM16, we count 
the overall MMA instruction calls, MMA_total, of 
that program, and pick a positive random number, 
MMA_FI ≤ MMA_total, representing one of these calls.

By far, most of the work in Algorithm 3 is per-
formed through the API call to GEMM16: This will 
be executed with maximal performance on any 
hardware with a GEMM16 implementation. In com-
parison, the up to two MMA calls from GEMM16_FI 
are insignificant—in particular, for real-world large 
GEMM operations with thousands of MMA calls.

Coming back to the original problem of estimat-
ing (3): We may approximate Pr(severity | f, p) by the 
relative failure frequency of program runs with hard-
ware fault simulation. To estimate Pr(f | p), the like-
lihood of encountering a transient fault, random in 
time and space, does not depend on the level of par-
allelization: Whether four SAs are used, or a single 
one four-times as long, does not matter. Accordingly, 

5By not using the actual Cmn-input to MMA for the given (k, m, n), Algorithm 2 does 
not account for “(a + b) + c ≠ a + (b + c).” To account for that, the k-loop needs to 
be executed as in Algorithm 4.

given the fault rate, Rf, of one L1 cache and the dura-
tion, τMMA, of one MMA execution, we may estimate

	 Pr MMA( ) exp _f p Rf≈ − − ⋅ ⋅( )1 MMA total τ � (5)

where the exponential failure distribution was used 
to model the probability of fault given fault rate and 
duration.

Simulating transient faults inside SAs
The same method applied for simulating transient 

faults in the SA’s caches (previous section) may be 
used for the simulation of arbitrary faults inside the 
SAs MMA MMA��.  For the SA’s digital arithmetic, 
however, simulating the correct Cmn-input to the 
MMA instruction matters6 and thus needs to be cal-
culated by simulating the k-loop (see Algorithm 4). 
For real-world applications with large k-loops, the 
additional simulation overhead is notable.

Simulating permanent faults
A permanent fault in an SA or its caches affects 

every k, m, and n and thus Algorithm 4 needs to be 
modified accordingly. The challenge in simulating 
permanent faults lies in modeling the likelihood of 
encountering the faulty SA.

6The SA may, for instance, perform optimizations if Cmn = 0.

Algorithm 2. GEMM16_FI_C: Simulate L1A/B/C 
cache fault during GEMM16 execution.

Algorithm 3. GEMM16_FSIM: simulate fault in 
GEMM16 execution.

Algorithm 4. GEMM16_FI_L: simulate fault inside 
SA logic during GEMM16 execution.
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Suppose we execute a program with ten GEMM16 
invocations on a DNN accelerator with 16 SAs. As 
GEMM16 requires four SAs, each time GEMM16 is 
invoked, so there are 16!/(16−4)! = 43,680 ways of 
assigning four output quadrants to 16 SAs. For the 
whole program, we get 43,68010 ≈ 1046 possibilities.

One approach to handle this problem is to model 
worst- and best-case scenarios. For instance, con-
sidering Figure 1, in the worst case, the program’s 
GEMM16s might always be mapped to the same slice 
and randomly distributed among its 16 SAs, one of 
which has a permanent fault. In the best case, each 
SA might be chosen at random from the 512 SAs 
comprising Figure l’s DNN accelerator.

ResNet-50 proof of concept
We applied the method presented in the previ-

ous section to ResNet-50 [10] inference on several 
DNN accelerator configurations by modifying the 
oneDNN API. Two of the oneDNN operations used 
by ResNet-50 utilize SAs: Matrix multiplication and 
convolution.2 We analyzed the algorithms imple-
mented by oneDNN for DNN accelerators and 
developed fault models according to the method 
described above. The buffers (FP16 data format) 
were corrupted by a single random transient bitflip 
for each inference, analogous to Algorithm 2. 24.8k 
ImageNet [11] inferences were executed for each 
configuration. The results are shown in Table 1.

The simulation was run on an Intel i9-7960X 
CPU. A single inference without fault injection took 
104 ms. The overhead in Table 1 is given with refer-
ence to this duration. “M × K × N” specifies the MMA 
dimensions and “LB ” the number of K × N matrices 
cached in L1B.4 “ΔTop” lists the change in percentage 
of inputs for which the highest rated output label is 
correct with versus without fault simulation. “#MMA” 
lists the number of MMA calls for a single inference.

As expected from the previous section, the condi-
tional failure probability (3), which may be identified 
with “ΔTop,” decreased with decreasing MMA dimen-
sions. The corrupted buffer element affects fewer out-
put elements. The effect on the exposure probability 
(3) is more complicated: While smaller buffers result 
in a smaller frequency of buffer corruption, account-
ing for the time the application is exposed to these 
buffers is not straightforward. While the number of 
required MMA calls obviously increases with decreas-
ing MMA dimensions, estimating the duration of each 
such call for different dimensions requires knowl-
edge of the SA’s implementation. Consequently, one 
should not draw conclusions on the risk (2) associ-
ated with different SA configurations from Table 1 
without accounting for these factors.

In conclusion, we successfully applied our novel 
methodology to a large workload, performing hundreds 
of thousand hardware fault simulations within hours 
on a regular CPU, where more traditional approaches 
would have taken days for a single simulation.

Future work
The best- and worst-case approaches for mod-

eling permanent faults (previous section) do not 
yield the single probability for program failure we 
are after (3). Rather, it delivers upper/lower bounds 
on that probability. Moving forward, we are devel-
oping models of computation incorporating sched-
uling algorithms for DNN accelerators to accurately 
estimate this probability.

In the previous section, we suggest running a 
hardware simulation, MMA� , for the complete MMA 
instruction. When modeling permanent faults inside 
the SAs, this simulation overhead becomes signifi-
cant. In future work, we will develop methods reduc-
ing the simulation overhead to simulating single 
MAF units (previous section) only.

Finally, while our research has focused on utilizing 
DNN accelerators for the class of DNN programs, other 
classes of matrix multiplication heavy programs would 
profit from using DNN accelerators (e.g., finite-element 
methods). In upcoming work, we will investigate the 
effect of hardware protection design choices on the 
dependability of these kinds of programs.� 
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Table 1. Transient buffer fault simulation for DNN 
accelerators running ResNet-50 inference.
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On the Impact of 
Uncertainties in 
Silicon-Photonic 
Neural Networks

 The rise of deep learning as the foundation 
of most modern artificial intelligence (AI) applica-
tions has been fueled by domain-specific AI accel-
erators that support custom memory hierarchies, 
variable precision, and optimized matrix multipli-
cation. Modern AI accelerators demonstrate supe-
rior energy and footprint efficiency compared to 
GPUs for a variety of inference and some training 
tasks. With the slowdown of Moore’s law, these 
accelerators approach fundamental limits on their 
performance due to: 1) the limited computational 
and performance-per-watt capabilities of silicon 
CMOS and 2) the use of low-bandwidth metallic 
interconnects [1].

Optical computing 
and communication can 
potentially overcome both 
these performance-limit-
ing issues. Computations 
required in deep learn-

ing, such as matrix–vector multiplication, can be per-
formed entirely in the optical domain with high energy 
efficiency. For instance, with respect to multiply and 
accumulate (MAC) operations, optical computing 
can achieve a 1,000× better energy footprint efficiency 
compared to the most energy-efficient electronic accel-
erators today [2]. Additionally, optical interconnects 
represent a post-Moore’s law alternative to replace 
low-performance metallic interconnects, hence ensur-
ing lower power consumption, higher bandwidth, and 
lower latency for the communication.

With the advent of silicon photonics, optical com-
ponents can now be integrated into dense silicon 
chips using CMOS-compatible manufacturing tech-
niques. Silicon-photonic neural networks (SPNNs) 
integrate the performance benefits offered by opti-
cal computing and interconnects with the low-cost 
and mature CMOS fabrication process to enable 
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low-latency and energy-efficient optical domain data 
transport and processing. However, SPNNs are prone 
to several reliability issues. Imperfections in the opti-
cal lithography process lead to variations in critical 
waveguide dimensions and hence incorrect opera-
tion of photonic components. Moreover, mutual ther-
mal crosstalk between adjacent optical components 
due to convective heat transfer has been observed 
[3]. These uncertainties, along with the finite encod-
ing precision on tuning parameters, can lead to the 
erroneous matrix–vector multiplication and a conse-
quent loss in SPNN classification accuracy.

In this article, we present a comprehensive anal-
ysis of the impact of uncertainties in SPNNs. In par-
ticular, we show that the effect of uncertainties can 
vary depending on the location and type of affected 
optical components. The main contributions of this 
article are as follows.

•	 An overview of different uncertainties in SPNNs 
originating from fabrication-process variations, 
manufacturing defects, and thermal crosstalk.

•	 A hierarchical analysis of the impact of different 
uncertainties on SPNN performance starting from 
the component level to the system level.

•	 A framework to identify critical SPNN compo-
nents where uncertainties can lead to severe per-
formance degradation.

Overview of SPNNs
A multilayer perceptron-based artificial neural net-

work (ANN) maps an input feature vector to an out-
put vector through a series of linear transformations 
and nonlinear activation functions. The neurons in 
adjacent linear layers (Figure 1a) are interconnected 
using weighted edges; these weights are updated 
during training to change the effect of each input. 

To mimic this dynamic weighting of connections, 
silicon-photonic devices can be used to control the 
optical transmission between two neurons in differ-
ent ways. Coherent SPNNs (C-SPNNs) use thermo-op-
tic phase shifters (PhSs) to modify the phase of the 
optical signal between two neurons. In this case, the 
tuned phase shifts in the PhS denote the dynamic edge 
weight. Alternatively, noncoherent SPNNs (N-SPNNs) 
use microring resonators (MRs) to modify the opti-
cal signal power on the interconnection between 
two neurons. The performance of NSPNNs can be 
adversely affected due to geometric variations in the 
waveguides. Experimental studies have shown that 
MRs used in N-SPNNs can suffer from a 4.79-nm res-
onance drift within a wafer due to process variations 
[4]. Additionally, NSPNNs require several power-hun-
gry wavelength-conversion steps and are prone to 
interchannel crosstalk among different wavelengths.

As a result, C-SPNNs are being preferred for 
emerging AI accelerators [5]. In this article, we 
primarily focus on uncertainties in C-SPNNs and 
present an overview of uncertainties in N-SPNNs 
in the upcoming section. Fully connected layers 
in C-SPNNs can be represented mathematically as 
matrix–vector multiplication followed by an acti-
vation function. Consider a layer Li with ni neurons 
fully connected to the next layer Li + 1 with ni + 1 

neurons. The output vector at Li + 1 is then given by 

O f M Oi
n

i i
n n

i
ni i i i

+

×

+ +

× ×
+ += ( )1

1
1 1

11 1 . Note that fi + 1 and Mi + 1 

are the nonlinear activation function and weight 
matrix associated with layer Li + 1, respectively. In 
C-SPNNs, the linear multiplication with the weight 
matrix (i.e., M) is implemented using arrays of con-
figurable Mach–Zehnder interferometers (MZIs), as 
shown in Figure 1b. Typically, activation functions 
(e.g., fi + 1) are implemented electronically, as optical 

Figure 1. Hierarchical design of a C-SPNN. (a) System level. (b) Layer level. (c) Device 
level. (d) Component level. (e) 3-D schematic of a strip waveguide.
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nonlinearities require high signal power and impose 
lower bounds on the physical footprint [6].

MZIs are used to determine the phase differ-
ence between collimated optical signals. Figure 
1c shows the typical structure of an MZI with two 
tunable PhSs—with phase shifts φ and θ—and two 
50:50 beam splitters (BeSs). The PhS, as shown in 
Figure 1d, are used to apply phase shifts and obtain 
varying degrees of interference between the optical 
signals traversing the two waveguides in the MZI. 
The refractive index of a silicon (Si) waveguide 
changes with temperature; this is known as the ther-
mo-optic effect. The thermal microheaters in PhSs 
can tune this temperature change by varying the 
current through a resistor coil. The Joule heat dissi-
pated from the resistor, in turn, controls the applied 
phase shift. Figure 1d also shows the schematic of 
a 2 × 2 directional coupler-based BeS. A fraction of 
the input optical signal denoted by transmittance t 
in In1 (In2) is coupled to Out2 (Out1) with a phase 
shift of π/2. The remaining fraction of the optical 
signal denoted by reflectance r is reflected to the 
original waveguide and propagates from In1 (In2) 
to Out1 (Out2). The ratios r and t are referred to as 
splitting ratios in this article. As the optical signal is 
distributed among the two waveguides in the ratios 
of r and t, the optical power is distributed in the 
ratios of r2 and t2. Therefore, from the law of conser-
vation of energy, we have r2 + t2 = 1. In an ideal 50:50 
BeS, half of the optical power is reflected, while the 
other half is transmitted; therefore, both the transmit-

tance and reflectance coefficients are 1
2

. The trans-

fer matrix of an MZI with two PhSs (φ and θ) and 

two BeSs—with splitting ratios (r, t) and ( , )′ ′r t —is 
given by
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Using singular value decomposition, the weight 
matrix corresponding to layer Li can be factorized 
into two unitary matrices and a diagonal matrix: 

M U V Ui i i i
H

i= ∑ ;  and Vi are the unitary matrices and 
Vi

H denotes the Hermitian transpose of Vi. Moreover, 
Σi is a diagonal matrix consisting of the eigenvalues 
of Mi. Any ni × ni unitary matrix can be represented 

by an array of 
ni

2








  MZIs connected, as shown in 

Figure 1b. MZIs can also be used to attenuate each 
waveguide separately without mixing (see Σ4 × 4 in 

Figure 1b). In this way, an ni × ni diagonal matrix 
can be represented by ni MZIs with one input and 
one output of each MZI terminated using optical 
waveguide tapers to prevent back-reflection and 
cross-coupling at the unused ports [7]. Additionally, 
an optical amplification, denoted by β in Figure 1b, 
is required on each output to counter the power dis-
sipation in lossy MZIs.

SPNNs can be trained either in an in-situ or an 
ex-situ fashion. In in-situ training, gradient computa-
tion needs to be performed on the SPNN platform; 
this involves sequentially perturbing each parame-
ter of the circuit. Such training demands significant 
computational time and resources and its efficiency 
can be affected under thermal crosstalk. Thus, cur-
rent implementations of SPNNs are typically trained 
ex-situ using a software model of the optical system 
on a digital computer. After training, the voltage driv-
ers in the PhS are configured to realize the trained 
weights.

Uncertainties in SPNNs
Silicon-photonic integrated circuits are sensitive 

to nanometer-scale lithographic variations, manu-
facturing defects, and thermal crosstalk. In this sec-
tion, we explore the fabrication process variations 
and run-time uncertainties affecting different pho-
tonic components.

Fabrication-process variations in C-SPNNs
Imperfections in the optical lithography process 

may lead to variations in the resist sensitivity, resist 
age or thickness, exposure change, and etching. 
A prominent example of such variation is in the Si 
waveguide width and thickness. Owing to the high 
refractive index contrast between the Si core and 
SiO2 cladding (Figure 1e), variations in the wave-
guide width and thickness significantly perturb the 
effective index. The effective index (neff) is the ratio 
between the phase shift per unit length in a wave-
guide relative to the phase shift per unit length in 
vacuum. The effective index also depends on the 
wavelength of the optical signal.

The temperature-dependent phase shift in PhSs is 
given by 

∆ = ( ) ⋅ ( ) ⋅ ∆φ
π

λ

2
0

l dn
dT

T  

where l is the length of the PhS and λ0 is the opti-
cal wavelength [3]. Also, dn dT K≈ ⋅

− −1 8 10 4 1.  is the 
thermo-optic coefficient of silicon at λ0 = 1,550 nm 
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and temperature T = 300 K, and ∆T is the temperature 
change. The tuned phase shift ∆φ can also change 
under lithographic variations in l. Additionally, impuri-
ties introduced in the waveguide material during fab-
rication can affect dn dT .

The microheaters in PhSs are controlled either 
by applying a tuned voltage or passing a tuned cur-
rent across the resistor coil. This voltage/current 
can be supplied from a dc source based on a digi-
tal-to-analog converter (DAC). The precision of the 
temperature shift ∆T and in turn the phase shift are 
limited by the quantization error in the DAC. For 
example, in an 8-bit DAC, only 256 different phase 
shifts in the range [0, 2π] can be realized. Low-pre-
cision PhSs can degrade the accuracy of the linear 
multipliers in SPNNs.

The power coupling coefficient in direction-
al-coupler-based BeSs denotes the fraction of input 
power coupled from one member waveguide to the 
other. This is given by K(z) = sin2 (δ z), where z is 
the coupler length and δ is the field coupling coef-
ficient. In ideal 50:50 BeS r t= =( )1 2 , K z( ) =1 2. 
Variations in the waveguide dimensions and the gap 
between the coupled waveguides arising from prox-
imity effects in the etching process affect δ. Changes 
in δ, in addition to variations in the coupler length z, 
can lead to nonidealities in BeSs.

Fabrication-process variations have a significant 
impact on the individual PhS and BeS; as a result, 
MZIs are highly sensitive to manufacturing uncertain-
ties. Indeed, MZIs are more sensitive to differential 
variations among the two constituent waveguides 
than the common-mode variations to the entire 
device. This is because the operation of interfero-
metric devices (e.g., MZIs) depends on the phase 
difference between optical signals in the constituent 
waveguides. As a result, common-mode variations, 
which affect optical signal on both the waveguides 
uniformly, do not have a significant impact on the 
performance of MZIs. Clearly, understanding the 
uncertainties in silicon-photonic circuits (including 
SPNNs) is essential for yield ramp-up.

Run-time uncertainties in C-SPNNs
Run-time uncertainties in C-SPNNs can arise due 

to mutual thermal crosstalk among the microheat-
ers in thermo-optic PhSs. The tuned phase shift in 
thermo-optic PhSs is proportional to l·∆T, where l 
and ∆T denote the PhS length and the change in 
temperature, respectively. To minimize the MZI 

area overhead, larger ∆T is required for tuning 
PhSs. This necessitates increased heater power con-
sumption and results in higher susceptibility to ther-
mal crosstalk. In fact, even the most efficient PhS 
requires a voltage Vπ = 4.36 V and power Pπ = 24.77 
mW to provide a phase shift of π [8]. The change 
in phase in the victim PhS due to thermal crosstalk 
depends on its geometric structure, heater mate-
rial, and the distance from the aggressor PhS. For 
a 5-µm aggressor-victim gap filled with the default 
SiO2 cladding and Pπ = 24.77 mW, the optical phase 
shift in the victim PhS is greater than 0.5 rad [3]. 
Note that due to the latency associated with ther-
mal tuning, the effects of thermal crosstalk may not 
be localized among proximal microheaters, espe-
cially in C-SPNNs with several MZIs. Moreover, due 
to simultaneous thermal gradients emanating from 
multiple MZIs, developing a high-fidelity thermal 
model is complex and requires experimental meas-
urements. Therefore, in our analysis of the impact 
of thermal crosstalk, we consider crosstalk-induced 
phase uncertainties in all MZIs.

Prolonged voltage biasing of optical components 
can lead to the formation of traps at the Si-SiO2 

boundary in optical waveguides. Such traps affect 
the refractive index of the Si core, thereby leading 
to higher scattering-induced optical loss. Experimen-
tal results on on-chip photonic networks show up to 
a 30% increase in the energy-delay product due to 
trap-induced aging. Similar aging-induced run-time 
uncertainties will also affect C-SPNNs due to long-
term thermal biasing.

Hierarchical analysis of the impact of 
uncertainties in C-SPNNs

While there are different sources of uncertain-
ties in PhSs and BeSs (e.g., lithographic variations, 
defects, impurities, and thermal crosstalk), their 
impact can be modeled by considering uncer-
tainties in the phase shifts (for PhSs) and splitting 
ratios (r and t for BeSs). In this section, we present 
a case study on the impact of uncertainties in these 
parameters due to lithographic variations and ther-
mal crosstalk. However, our criticality assessment 
approach is agnostic to the source of uncertainties 
and will therefore hold for any other sources of 
uncertainties affecting the phase shifts and splitting 
ratios. Figure 1a–d shows the different hierarchical 
levels in our analysis. Component-level uncertain-
ties in the PhS and BeSs lead to faulty MZI operation 
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at the device level. An array of faulty MZIs lead to 
deviated matrices (e.g., U, Σ, and VH); this in turn 
leads to faulty weight matrix (M) at the layer level. 
At the system level, a C-SPNN with such faulty weight 
matrices leads to inferencing errors. We conclude 
this section with a discussion on few mitigation tech-
niques to improve the tolerance of C-SPNNs against 
uncertainties.

Component level: PhSs and BeSs
The phase shifts in thermo-optic PhSs can be 

affected due to lithographic variations in the wave-
guide, quantization error in the DAC, and thermal 
crosstalk. Phase uncertainties from these sources 
can be classified into two main types.

1.	 Nominal-dependent (ND) phase uncertainties: 
The standard deviation of the phase uncer-
tainties is proportional to the nominal tuned 
phase shift. In this case, the deviated phase 
shift is given by φ̃ = φ + σndφℵ(0,1). Here, φ 
and ℵ(0,1) denote the nominal tuned phase 
shift and the standard normal distribution, 
respectively. The standard deviation of the 
uncertainties (σndφ) increases with φ. ND 
uncertainties predominantly affect PhSs with 
high phase shift; typical sources include ther-
mal crosstalk and quantization errors.

2.	 Nominal-independent (NI) phase uncertain-
ties: In this case, the standard deviation of 
the uncertainties is independent of the tuned 
phase shift, φ̃  = φ + σniℵ(0,1). NI uncertain-
ties include geometric process variations in 
the waveguide and manufacturing defects 
and impurities.

Prior studies indicate a mean phase uncertainty 
of up to 0.21 rad (≈ 0.07π) in fabricated PhSs. To 
consider a range of uncertainties around this mean, 
we vary σnd and σni in the range [0.005π, 0.15π]. 
In ideal 50:50 BeSs, r t= =( )1 2  (the “Fabrica-
tion-process Variations in C-SPNNs” section). How-
ever, with uncertainties, a deviation of 1%–2% is 
typically expected in the r and t parameters. For 
our analysis, we consider the deviated reflectance 
r̃  = r + σBeSℵ(0,1) with the deviated transmittance t

� �t r= −( )1 2 . For a fair comparison with the impact 
of PhS uncertainties,σBeS is varied in the range

0 005 1 2 0 15 1 2. . , . .[ ] . Note that uncertainties in 

the BeS are, in principle, NI as all the devices have 
the same nominal splitting ratios r t= =1 2 .

Device level: MZIs
Variations in the phase shifts and splitting ratios 

affect the MZI transfer matrix TMZI (1). To measure 
the closeness between the deviated transfer matrix 
T̃MZI and TMZI, we use the fidelity metric given by 

F T T T T N( , ) ( ) � �= Trace
2

. Here, T̃† and N denote 
the conjugate transpose and the size of T̃, respec-
tively. Note that F(T,T̃ ) = 1 if and only if T = T̃  and F 
decreases with decreasing similarity between T and 
T̃ . Figure 2a shows how F changes due to ND phase 
uncertainties. In this case, the deviated phase shifts are 
θ̃ = θ (1 + ∆rel) and φ̃  = φ (1 + ∆rel), where ∆rel denotes 
the relative change in the phase shifts. Clearly, an MZI 
with higher phase shifts is more susceptible to ND 
phase uncertainties (the z-axis in Figure 2a denotes 
1/F). However, for NI phase uncertainties, F is inde-
pendent of θ and φ. The susceptibility of different 

Figure 2. (a) Deviation in TMZI due to ND phase uncertainties. (b) Average RVD (left) for 
four 5 × 5 unitary matrices with one MZI under variations at a time. Right: MZI array 
(including the MZI numbers) to represent any 5 × 5 unitary matrix. (c) Impact of ND and 
NI phase uncertainties and uncertainties in BeS splitting ratio on the C-SPNN inference 
accuracy.
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MZIs to such uncertainties, and also to uncertainties 
in the splitting ratio, depends solely on their position 
in the MZI array.

Layer level: MZI array
Unitary multipliers in the linear layers of C-SPNNs 

can be realized using MZI arrays. Due to faulty MZIs, 
these unitary multipliers can deviate from their 
intended form. The deviation can be measured 
using the relative-variation distance (RVD) given by
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Here, U(Ũ ) denotes the N × N intended (deviated) 
unitary matrix and |Um,n| denotes the absolute value of 
Um,n. Figure 2b shows the mean RVD (over 1,000 itera-
tions) when uncertainties with σnd = 0.05, σni = 0.05π, 
and σBeS = 0.05c are inserted in one MZI at a time, in 
four different randomly generated 5 × 5 unitary matri-
ces. We observe that the distribution of mean RVD 
differs across the four unitary matrices. Therefore, the 
impact of uncertainties in the MZI array on the unitary 
multipliers depend on both the phase shifts and the 
position of the affected MZI.

System level: C-SPNN
Incorrect matrix multiplication at the layer level 

can lead to misclassifications in the C-SPNN. To 
understand the impact of uncertainties in the phase 
shifts and splitting ratios on the classification accu-
racy, we consider an imprecise fully connected 
C-SPNN with two hidden layers of 16 complex-val-
ued neurons. Each linear layer is followed by a non-
linear Softplus layer. A LogSoftMax layer is used after 
the output layer to obtain a probability distribution. 
We use a cross-entropy loss function during training. 
To reduce the feature vector size, each real-valued 
MNIST image is converted to a complex feature vec-
tor of length 16 using fast Fourier transform [9].

Figure 2c shows the mean inference accuracy (over 
1,000 Monte Carlo iterations) under random ND and 
NI uncertainties in PhSs (characterized by σnd and 
σni) and uncertainties in BeSs (characterized by σBeS). 
We observe that for the different cases, the inference 
accuracy declines steeply due to these uncertainties. 

In particular, with uncertainties in both PhSs and BeSs, 
the accuracy drops by ≈70% even under low levels of 
uncertainties (σni = 0.05π and σBeS = 0.05/r t= =( )1 2). Also, 
uncertainties in PhSs have a higher impact on the accu-
racy compared to similar uncertainties in BeSs.

Understanding the impact of localized uncer-
tainties in the MZI array is necessary for identifying 
the critical components in an SPNN. The tolerance 
of an MZI is defined as the maximum allowable 
change in the splitting ratio of a component BeS 
that can be recovered using postfabrication thermal 
tuning in PhSs. Based on this notion of tolerance, 
it is found that the central MZIs in an array, which 
require a tuned phase shift very close to 0, have 
the minimum tolerance to BeS fabrication errors. 
However, the tolerance of an MZI to uncertainties 
(or the lack thereof) can also be quantified by the  

Figure 4. Comparison between the loss in inferencing 
accuracy in the presence of ND phase uncertainties in 
the PhS with the top (fhigh%) and bottom (flow%) phase 
shifts in each layer.

Figure 3. Average accuracy loss (in %) due to 
zonal perturbations in the unitary weight matrices 
representing the weights in the first hidden layer.  
(a) UL1. (b) VL1

H.
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accuracy loss due to localized uncertainties in the 
MZI. A higher accuracy loss signifies lower tolerance 
of an MZI to localized uncertainties. To simulate the 
impact of localized NI uncertainties, we divide the 
C-SPNN into zones of four MZIs (in a 2 × 2 grid). We 
then select one zone at a time to insert uncertain-
ties with σni = 0.1π and σBeS = 0.1/r t= =( )1 2, while all other 
zones have background uncertainty with σni = 0.05π 
and σBeS = 0.05/r t= =( )1 2. Figure 3 shows the mean accu-
racy loss (over 1,000 Monte Carlo iterations) due to 
localized uncertainties in the two unitary matrices 
corresponding to the first hidden layer in our C-SPNN 
in the form of heatmaps. Each cell in the heatmaps 
corresponds to a zone with 2 × 2 MZIs. The value 
(color) in each cell denotes the accuracy loss due 
to uncertainties. We observe that even under similar 
levels of uncertainties, the accuracy loss can vary by 
up to 10%. Also, note that the low- and high-impact 
zones are arranged randomly in each heatmap. This 
reiterates our prior observation that the suscepti-
bility of MZIs to different uncertainties depends on 
the tuned phase shifts as well as their location in  
the array.

However, in the presence of ND phase uncertain-
ties, the inferencing accuracy is strongly correlated 
with the tuned phase shift of the affected MZI(s)—
MZIs with higher phase shifts are more susceptible 
to such uncertainties. To demonstrate this, we rank 
the tuned phase shifts in each layer of our example 
C-SPNN in decreasing order, and insert ND uncer-
tainties (quantified by σnd) to the top fhigh% and 
bottom flow% ranked phase shifts. Figure 4 shows the 
inferencing accuracy loss due to such uncertainties 
can be catastrophic (up to ≈ 60%) when MZIs with 
higher phase angles are affected. In contrast, MZIs 
with lower phase angles are practically resilient to 
ND uncertainties. Therefore, minimizing the tuned 
phase shifts improves the C-SPNN performance 
under such uncertainties, in addition to improving 
their power efficiency (static power consumption in 
PhSs is proportional to the tuned phase shift). How-
ever, in realistic scenarios, C-SPNNs encounter both 
NI and ND uncertainties and therefore the overall 
susceptibility of MZIs to uncertainties depends on 
both their tuned phase shift and location.

Mitigating the impact of uncertainties in 
C-SPNNs

The extent of the impact of fabrication process 
and run-time uncertainties on C-SPNNs has only 

recently been fully understood and as such, there are 
very few uncertainty mitigation techniques specific 
to C-SPNNs. Postfabrication trimming approaches 
can minimize the phase uncertainties between 
the two arms of an MZI by implanting Ge in the Si 
waveguide.

Ge implantation converts crystalline Si (lower 
refractive index) into its amorphous form (higher 
refractive index) by breaking the chemical bonds. 
Due to this, the refractive index (and in turn, the 
phase shift) in each arm can be precisely trimmed 
by laser annealing [10]. However, postfabrication 
calibration methods rely heavily on the character-
ization of individual MZIs; therefore, this method 
is infeasible for C-SPNNs with high MZI count. To 
reduce thermal crosstalk, microheaters can be iso-
lated using deep trenches cutting through the SiO2 

cladding. These structures do not involve special 
fabrication techniques and lead to a 3× reduction in 
the phase shift under thermal crosstalk [3]. Recent 
search efforts for mitigation techniques also focus 
on uncertainty resilient architectures such as the 
FFTNet which reduces the optical depth and utilizes 
fewer MZIs, and the diamond topology where the 
symmetric structure leads to uniform optical losses 
in each input-to-output path. An uncertainty-aware 
training method that uses a modified cost func-
tion during training and postfabrication hardware 
calibration is presented in [11]. A novel zero-cost 
optimization technique that improves the power effi-
ciency and robustness by leveraging the nonunique-
ness of singular value decomposition has been 
proposed in [12].

SPNNs are prone to nanometer-level fabrica-
tion process variations, interdevice thermal cross-
talk, optical loss, and manufacturing defects. Each 
of these sources of uncertainties affects the phase 
angles and the splitting ratios in different ways. In this 
article, we have presented a comprehensive analysis 
of the various fabrication-process variations and run-
time uncertainties and explored several methods 
to mitigate their impact on the performance of an 
SPNN. We have used a unified hierarchical approach 
for criticality assessment of these uncertainties and 
shown that the degradation in performance depends 
on both the tuned parameter values and the position 
of the affected components. Our framework can be 
used for posttraining identification and compensa-
tion of critical SPNN components.� 
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Analysis and Mitigation 
of DRAM Faults 
in Sparse-DNN 
Accelerators

 With the increasing size of deep neural net-
works (DNNs), accelerators fail to efficiently process 
the large amounts of synaptic weights, thereby incur-
ring intensive computation and memory accesses 
[1]. Sparse-DNN accelerators aim to alleviate this 
challenge posed by the overwhelming number of 
neurons and synapses, while maintaining the accu-
racy of the original network. Sparse accelerator 
employs a novel dataflow that enables maintaining 
the sparse tensors in a compressed encoding format, 
which minimizes data transfers and reduces storage 
requirements.

Dynamic random access memory (DRAM) is tra-
ditionally utilized as the main memory subsystem 
in such resource-constrained sparse accelerators. 
However, due to device-level nonidealities in this 

semiconductor memory 
configuration, cells in the 
DRAM tend to leak out 
charge, thereby inducing 
bit-flips in the structure 
past their retention time. 
Hence, the DRAM mod-

ule is periodically refreshed to replenish the cells, 
thereby incurring considerable power overheads. To 
address this issue, several researchers proposed low-
ering the refresh rates [2], [3]. However, this results 
in bit-flips that are highly dependent on the temper-
ature and VRTs of each cell in the structure. Such 
bit-flips impacting the crucial model parameters can 
be detrimental to DNN inference outcomes. Since 
such accelerators are often deployed in mission-crit-
ical environments, mitigating the impact of such 
faults is imperative to avoid catastrophic circum-
stances. A point to note here is that, even though the 
accuracy of the DNN accelerator is of paramount 
importance in safety-critical applications, the energy 
consumption of such systems often incurs signifi-
cant costs in resource-constrained scenarios [4]. 
Hence, approximation has emerged as a strategy to 
provide execution performance and save computa-
tional resources at the cost of a tolerable precision 
reduction in high-assurance environments [4], [5]. 
Depending on the application and the accuracy 
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of the DNN accelerator, the designer incorporates 
approximation in the system performance and 
defines a conservative threshold, below which the 
impact of a manifested error is deemed as critical by 
the deployed application.

In this article, we develop a novel error injection 
framework that analyzes the impact of errors on 
application quality. Variations in device-level char-
acteristics of the transistors in the DRAM engender 
faults throughout the structure, which are induced 
as bit-flip errors at random locations in the mem-
ory subsystem. Moreover, we provide a systematic 
approach to mitigate faults, thereby improving the 
reliability in the context of energy-limited sparse-
DNN accelerators. To the best of our knowledge, 
this is the first work that focuses on the reliability of 
sparse-DNN accelerators.

The key contributions of this article are as follows.

•	 This article demonstrates a novel error injection 
framework in the memory subsystem of a sparse-
DNN accelerator, which exploits the sparsity in 
a tensor graph to expedite the execution of net-
work inference.

•	 Application-level reliability analysis of the accel-
erator for varying DRAM refresh intervals at mul-
tiple operating temperatures, executing multiple 
DNN architectures on multivariate data sets, pro-
vides an estimation of the vulnerability of the 
architecture.

•	 Finally, by virtue of the step-by-step systematic miti-
gation technique, our proposed framework incorpo-
rates approximation in the sparse accelerator that 
maintains the classification accuracy above the 
critical threshold, while also minimizing the energy 
consumption by lowering the refresh interval of the 
memory module to the maximum extent possible.

Related Work
Ongoing research on implementing DNNs at the 

edge has led to the development of sparse acceler-
ators, which leverages the sparsity of the network 
architecture to furnish improved performance and 
energy efficiency over traditional dense accelera-
tors [1]. To further reduce the energy consumption 
in these resource-constrained environments, exist-
ing research has proposed the utilization of subop-
timal DRAM refresh rates, thereby approximating 
the device performance [2], [3]. However, at these 
suboptimal refresh rates, the impact of DRAM bit-flip 

errors on safety-critical DNN accelerators has not 
been well explored.

In a complementary metal–oxide–semiconductor 
(CMOS)-based DNN accelerator, the susceptibility of 
the architecture under single-event upsets on the dat-
apath is analyzed on multiple convolutional neural 
network (CNN) models [6]. To explore the impact of 
errors on the accuracy, permanent faults are injected 
into the memory [7] and datapath [8] of a DNN accel-
erator. However, none of these approaches focus on 
fault tolerance of sparse-DNN accelerators, arising 
from suboptimal refresh rates in the DRAM.

Background

DRAM basics
A DRAM is usually organized as multiple collec-

tions of a 2-D array of DRAM cells, where each DRAM 
cell consists of a single access transistor and a single 
capacitor. The charge stored in this capacitor deter-
mines the DRAM cell value. Due to various nonideal-
ities associated with the access transistor, the charge 
stored in the capacitor leaks away over time (reten-
tion time). Hence, a DRAM requires its charge to 
be periodically replenished using an implicit back-
ground refresh operation every 64 ms. This periodic 
refresh operation usually contributes to a significant 
amount of DRAM energy overhead as well as a per-
formance bottleneck [3].

To address this challenge, recent works have pro-
posed DRAM to increase the refresh period to values 
that are orders of magnitude higher than the nom-
inal 64 ms [3]. However, it also results in bit errors 
at random DRAM sites due to variations associated 
with the underlying process technology, as shown 
in Figure 1a. The impact of temperature on bit error 
rate is drastic, compared to the refresh interval. This 
can be attributed to the DRAM cell retention time, 
which decreases exponentially with higher operat-
ing temperatures [9]. These DRAM bit errors are of 
two types: true error and antierror, where a bit value 
of 1 gets flipped to 0 and vice versa, respectively [9]. 
The number of their occurrences increases with an 
increase in refresh period as shown in Figure 1b and 
significantly exceeds the threshold below which 
error-correction codes (ECCs) in DRAM can be effec-
tive. As depicted in Figure 1c, a large number of bit 
errors also stem from the phenomenon of variable 
retention time (VRT) [10]. A DRAM VRT cell exhib-
its multiple retention times (or states) randomly and 
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unpredictably at different points. The probability 
of a bit error occurring at different bit positions in a 
32-bit word is demonstrated in Figure 1d. The detri-
mental impact of these errors on DNN accelerators 
has not been evaluated in existing research, which 
serves as the primary motivation behind this work. It 
should be noted that although ECC can address this, 
it results in additional hardware overhead. Hence, 
many commercial DRAM models are either devoid 
of or have limited ECC capabilities [10].

Sparse-DNN accelerators
To accommodate the compute-intensive DNN 

algorithms, a number of DNN accelerators have 
been developed. Recently, a new class of sparse 
DNN accelerators has emerged that accelerates the 

performance of sparse matrix convolution. Along 
with the trained network parameters, these accel-
erators contain compute acceleration and memory 
compression bitmaps in the DRAM. The compute 
acceleration bitmap enables the accelerator to lever-
age the sparsity in a tensor graph and therefore, skip 
certain computations during the inference, based 
on the bitmap encoding of the tensors. The memory 
compression bitmap, on the other hand, allows for 
reduced data movement and increased on-die stor-
age capacity. Thus, the sparse accelerator furnishes 
improved performance and energy efficiency by uti-
lizing a dense compressed representation of weights 
throughout the entire process flow. Since these 
data and their corresponding bitmaps are stored 
in the DRAM, their reliability is extremely critical. 

Figure 1. DRAM error characteristics. (a) Variation of refresh bit error rate 
with temperature and refresh interval. (b) Variation of true and anti-DRAM 
bit error rate with refresh interval. (c) Increase in VRT cells with refresh 
interval and temperature. (d) Probability of a bit error occurring at different 
bit positions. The experimental setup is similar to that described in [3].
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Errors in these parameters can lead to a reduction 
in the classification accuracy of the sparse acceler-
ator. To this end, we propose a novel fault injection 
framework and subsequently develop a systematic 
quality-aware mitigation strategy to improve the per-
formance of the sparse accelerator on multiple DNN 
applications.

Error injection framework
In this article, a DNN is considered to be trained 

one time in a nonfaulty environment. The trained 
weights, along with the bitmaps, are stored in the 
DRAM of the sparse inference accelerator at the edge. 
In this section, we present a novel error injection that 
introduces faults in this DRAM architecture at subop-
timal refresh rates. A point to note here is that we do 
not consider the impact of errors in the activations of 
the DNN, since they are stored in the static random 
access memory (SRAM) of the accelerator (the next 
level of memory closer to the processing element), 
which is much smaller in size and lacks the need of 
a constant refresh, as opposed to the DRAM. Synaptic 
weights, on the other hand, are stored for all the layers 
of the network together in the much larger DRAM and 
hence are subjected to DRAM faults.

Error in trained model weights
To illustrate the impact of error injection in the 

pretrained weights, let us consider an output yi from 
a particular neuron in a hidden layer of the network, 
which can be represented as

	 y w , a b , a (y )i i j j i

j

i i= + =∑ φ � (1)

where wi,j represents a specific weight element from 
the weight matrix of a particular layer, which is multi-
plied with activation aj and subsequently added with 
bias bi. The accumulated output over a column of the 
weight matrix is then passed onto a nonlinear activa-
tion φ to furnish the output from a distinct neuron in 
a specific layer of the network. Now, let us consider 
an error in the DRAM, which when manifested in the 
stored location of wi,j alters the value by an amount 
∆w, thereby mapping a weight of w’i,j = wi,j ± ∆w 
instead of wi,j in the inference architecture. Hence, 
the output y’i can be represented as
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As a result of this additional ∆waj, y’i furnishes an 
erroneous computation, which is propagated to all 
the neurons in the subsequent layers of the network. 
The impact of the injected fault in the weight thus 
amplifies, degrading the classification accuracy.

Error in compute acceleration bitmap
Compute acceleration bitmaps are generated 

by ANDing the sparsity bitmaps obtained from 
performing zero-valued compression on both acti-
vations and weights. These bitmaps stored in the 
DRAM enable the sparse accelerator to skip certain 
computations, thereby expediting the inference 
execution. For example, let us consider the weights 
corresponding to a specific layer of the network. 
The sparse accelerator encodes each nonzero 
weight within the DRAM as “1”; correspondingly, 
each zero weight is encoded as “0” in the accelera-
tion bitmap, and subsequently stored in the DRAM. 
Now, as these weights are multiplied with their 
corresponding activations, the computation for the 
weights that are mapped as “0” are skipped, and 
only those mapped as “1” are executed, thereby 
accelerating the inference.

As shown in Figure 2a, an antierror in this 
encoded bitmap flips a “0” to “1.” But, since this 
erroneous “1” in the bitmap corresponds to a zero 
value of the weight, executing this computation 
will render a zero output, thus having no impact 
on the inference. However, this unnecessary com-
putation leads to an increase in energy consump-
tion, along with undesired performance penalties. 
On the contrary, as a true error in this bitmap flips 
a “1” to “0,” the computation that should have 
been executed is disregarded in the process, as 
demonstrated in Figure 2a. This modifies the net-
work architecture, leading to substantial degrada-
tion of the accuracy.

Error in memory compression bitmap
Memory compression bitmaps, stored in the 

DRAM, are leveraged by the sparse accelerator to 
enable zero-valued compression, thereby reducing 
memory access. Figure 2b represents an illustrative 
memory compression bitmap, which is generated by 
encoding the nonzero values as “1” and zeroes as 
“0” from the original data array. Prior to inference, 
the accelerator traverses the bitmap sequentially to 
access the memory locations that have “1,” and skips 
those which are denoted as “0.”
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If an error (true or anti) is injected in this mem-
ory compression bitmap, the mapping of weights 
will be jeopardized, as demonstrated in Figure 2b. 
Let us consider scenario one, where the bit-flips at 
specific locations are marked in red. In this case, 
the weights are not only mapped to the incorrect 
locations, but the last nonzero weight “–37” is also 
not accessed, thereby resulting in an erroneous 
representation. In the second scenario, the num-
ber of 1’s in the encoded bitmap has exceeded 
the number of nonzero values in the original data 
array. Hence, along with incorrect weight mapping, 

when all the nonzero values from the original data 
array have been accessed, a garbage value “g” is 
dumped in the corresponding location with “1” in 
the memory compression bitmap. Thus, injecting 
both true and antierrors leads to an erroneous rep-
resentation of the weight array, thereby modifying 
the network configuration, resulting in degrada-
tion in performance in the sparse accelerator. For 
cases where the compute acceleration bitmap is 
not stored in DRAM but computed internally dur-
ing inference, a fault in the memory compression 
bitmap translates to a fault in compute accelera-
tion bitmap as well.

Experimental results

Experimental setup
We considered two popular neural network 

architectures, multilayer perceptrons (MLPS) and 
CNNs, LeNet and VGG-16. MLPs are executed on 
data sets—Modified National Institute of Stand-
ards and Technology (MNIST) and fashion-MNIST 
(F-MNIST), whereas LeNet is executed on F-MNIST 
and VGG-16 on CIFAR-10. The MLP has four fully 
connected layers of (256 – 256 – 256 – 10) config-
uration. To perform a behavioral simulation of a 
sparse accelerator, we implemented the MLP and 
CNNs in Keras and PyTorch frameworks, respec-
tively, using Python3. The trained weights from 
each network are extracted and quantized to 8 
bits to be stored in the DRAM, similar to [8]. In a 
nonfaulty environment, MLP furnishes a baseline 
accuracy of 97.28% and 88.17% for MNIST and 
F-MNIST, respectively. LeNet, on the other hand, 
furnishes a baseline classification accuracy of 
92.16% for F-MNIST, and VGG-16 exhibits a corre-
sponding baseline of 91.43% on CIFAR-10. A point 
to note here is that even though a model trained 
with dropout layers is traditionally presumed to 
improve the resiliency of the DNN against errors, 
the threshold of such resilience can also be easily 
inflicted with bit-level faults and hence not consid-
ered a baseline. The novel error injection frame-
work performs ten Monte Carlo simulations, in 
accordance with existing research [11], to induce 
both true and antierrors at random locations in the 
weights as well as the encoded bitmaps through-
out the DRAM structure. We tracked the errors at a 
page granularity, where each page acquires a size 
of 4 KB in a 1 GB DRAM.

Figure 2. Error injection in (a) compute acceleration 
bitmap and (b) memory compression bitmap of a 
sparse accelerator.
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Results

Memory compression bitmap under DRAM 
faults

Figure 3a represents the degradation in accuracy 
for incremental faults in the memory compression 
bitmaps of the sparse accelerator. With a single fault, 
MLP on MNIST furnishes a significant accuracy drop 
of 80.28%, which increases to a maximum degrada-
tion of 88.79% for five faults per layer of the network. 
An identical trend is observed for the remaining data 
sets and networks. Therefore, it can be inferred with-
out loss of generality that errors in memory compres-
sion bitmaps are detrimental to the reliability of the 
sparse accelerator.

Compute acceleration bitmap under  
DRAM faults

The impact on accuracy for both MLP and CNNs 
is observed by injection of true errors in the encoded 
compute acceleration bitmap, as represented in  
Figure 3b and c, respectively. With incremental 
faults in the bitmap, the degradation in classifica-
tion accuracy increases to a point, from where it 
saturates. The saturation point is obtained upon 
inflicting all the encoded weights with true errors 
in the last layer of the network. MNIST and F-MNIST 
furnish maximum accuracy drops of 87.54% and 
78.17%, respectively, for a fault rate of 1%. LeNet 
and VGG-16 on F-MNIST and CIFAR-10 manifest 
a maximum of 83.11% and 82.36% degradation 
on the accuracy, respectively, at a 2% fault rate. 
Hence, errors in the compute acceleration bit-
maps also cause significant degradation in network 
performance.

Model weights under DRAM faults
The position of the induced bit-flip is varied 

across the three most significant bit positions, start-
ing from the sign bit. The corresponding reduction 
in accuracy for MLPs on MNIST and F-MNIST have 
been outlined in Figure 4a and b, while Figure 4d 
and c demonstrates the performance degradation 
of CNNs on the F-MNIST and CIFAR-10 data sets, 
respectively. As the significance of the bit posi-
tion diminishes, the sensitivity of the induced fault 
reduces. However, the number of faults required 
to obtain a significant accuracy drop for faults 
in model weights is substantially higher than the 
encoded bitmaps. Hence, the model weights are 

inferred to be the most resilient, which motivates 
us to explore the impact of VRT and operating tem-
perature on the weights of the sparse accelerator.

Impact of VRT of DRAM on network 
performance

In this experiment, the susceptibility of the 
sparse accelerator under faults is analyzed for VRTs 
in each cell of the DRAM module at suboptimal 
refresh rates for a particular operating tempera-
ture of 25 °C. The number of bit flips correspond-
ing to each refresh interval is obtained from the 
DRAM characteristics as demonstrated in Figure 
1. Figure 4e outlines the reduction in accuracy for 
errors induced in the trained weights. The reduc-
tion in accuracy increases with incremental refresh 
intervals until 40 seconds, after which every single 
weight in the DRAM render to be faulty to furnish 
a consistent degradation in accuracy. Additionally, 
medium refresh intervals impact all classes in the 
data set owing to random fault manifestation in 
each of the ten runs. As a result, a slightly increased 
accuracy drop is exhibited, which furnishes a 
biased impact of faults on a particular class of 
data. Hence, as seen from Figure 4e, lower refresh 
intervals (less than 5 s, but higher than the nominal 
refresh interval of 64 ms) are imperative to evade 
degradation in accuracy, thereby bolstering the 
reliability of the sparse accelerator.

Impact of DRAM temperature on network 
performance

To analyze the impact of variation in temperature 
on bit errors, as explained in the previous section, 
the previous experiment is repeated, but at an oper-
ating temperature of 70 °C. While the former simu-
lates a room-temperature environment, the latter 
indicates a higher temperature that a typical com-
mercial application can attain during operation. The 
vulnerability of the sparse accelerator for four differ-
ent networks is observed at 70 °C and plotted along-
side 25 °C in Figure 4e. As observed from the figure, 
at higher refresh intervals, the reduction in classifi-
cation accuracy saturates for both the temperatures, 
similar to the previous section.

Mitigation strategy
To mitigate these impacts of faults, we propose 

a systematic step-by-step quality-aware mitigation 
technique that incorporates approximation in the 
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sparse accelerator. This enables the accelerator to 

maintain the classification accuracy above the crit-

ical threshold, while also minimizing the energy 

consumption by lowering the refresh interval of the 

memory module to the maximum extent possible. 

Prior research [3] has shown that the page error 

rate in a DRAM due to high refresh intervals follows 

almost a similar trend as the bit error rate, which is 

demonstrated in Figure 1a. In such a DRAM, even 

at higher refresh intervals, there exist certain pages 

which manifest zero error. We refer to a collection of 

these zero error pages as an error-free bin.

Utilizing this DRAM configuration, we propose a 

strategy that is capable of incrementally enhancing 

the fault tolerance of the sparse accelerator. Depend-

ing on the desired performance from the target DNN 

application, we develop a three-stage fault mitiga-
tion technique, as discussed below.

•	 Stage I: The memory compression bitmaps are 
the first to be allotted in the limited number of 
error-free bins in the DRAM. Since the mem-
ory compression bitmaps are rendered to be 
the most vulnerable as shown in the previous 
section, these are prioritized over the compute 
acceleration bitmaps and the model weights to 
be stored in the zero-error pages. When this stage 
is implemented, the accelerator is able to recover 
up to 76.24% of the classification accuracy of the 
sparse DNN, averaged over the four different 
case studies. The worst-case scenario can appear 
from faults in the compute acceleration bitmaps, 
which is demonstrated in the previous section.

Figure 3. Reduction in classification accuracy for faults in (a) 
memory compression bitmap and compute acceleration bitmap of  
(b) MLP on MNIST and F-MNIST; (c) LeNet on F-MNIST and VGG-16  
on CIFAR-10.
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Figure 4.Variation of accuracy drop for faults in model weights of (a) MLP on MNIST, (b) 
MLP on F-MNIST, (c) LeNet on F-MNIST, and (d) VGG-16 on CIFAR-10. (e) Impact of VRT 
and DRAM temperature on the classification accuracy of the sparse accelerator.
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•	 Stage II: If the DRAM is left with more error-free 
bins, the encoded compute acceleration bitmaps 
are then stored in these pages, along with the 
memory compression bitmaps. This furnishes up 
to 84.48% recovery in classification accuracy of 
the sparse DNN accelerator. In this case, faults can 
manifest in the trained model weights, the impact 
of which is demonstrated in the previous section.

•	 Stage III: This stage furnishes the storage of model 
weights along with the encoded memory com-
pression and computes acceleration bitmaps in 
the available error-free pages in the DRAM. Thus, 
the sparse accelerator obtains a maximum fault 
tolerance with 100% recovery in classification 
accuracy, when exposed to errors in the memory 
subsystem.

This quality-aware mitigation approach is out-
lined in Figure 5. This entire operation is performed 
by the designer, prior to the deployment of the 
memory module at the edge. Based on the expected 
accuracy from the target DNN inference, the errors 
in the vulnerable components can be mitigated 
with the proposed technique. With the DRAM spec-
ifications as mentioned in the previous section, this 
approach will furnish a minimal memory overhead 
in the sparse DNN accelerator.

Discussion
In this article, a novel error injection framework is 

proposed in the context of sparse accelerators. Faults 
manifested in the DRAM of a sparse DNN accelera-
tor not only incorporate errors in the trained model 
parameters, but also impact the memory encoding 
bitmaps and the compute acceleration bitmaps of 
the sparse network. Faults in the bitmaps inflict the 
control flow of the accelerator, thereby modifying 
the topology of the underlying DNN, as demonstrated 
in the previous section. In comparison, faults in the 
model weights only introduce errors in computa-
tion, without impacting the network architecture. As 
a result, the reduction in classification accuracy for 
faults in the sparsity bitmaps is significantly higher 
compared to faults in the network parameters, as 
outlined in the previous section.

Following this, we developed a quality-aware 
fault mitigation technique to incrementally improve 
the performance of the accelerator, at the cost of 
minimal memory overhead. In 1-GB DRAM with a 
page size of 4 KB, the total number of pages is 1 GB/
AKB = 262,144. The number of bits required to index 
each of these pages to identify the error-free ones 
can be calculated as /oy%262111 = 18. Therefore, an 
excess of 18 × 262,144 = 4,718,592 bits is required for 

Figure 5. Overview of the proposed mitigation strategy.
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the mitigation strategy, equivalent to 0.05% memory 
overhead on the 1-GB DRAM. Thus, in lieu of mini-
mal overhead, this scheme will enable the DRAM to 
operate at lower refresh intervals, while improving 
the reliability of the sparse accelerator.

To the best of our knowledge, this is the first 
work that performs an application-level reliability 
analysis on a sparse-DNN accelerator subjected to 
DRAM faults. The analysis derived in this article can 
be extrapolated to other network architectures as 
well to explore model-specific fault tolerance. This 
will aid in storing the critical weights in the error-free 
bins of the DRAM, where the number of zero-error 
pages is limited. This will reduce the memory over-
head, while improving the reliability of such acceler-
ators used in mission-critical systems.� 
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On the Mitigation of 
Read Disturbances in 
Neuromorphic Inference 
Hardware

 Neuromorphic systems are integrated cir-
cuits designed to mimic the neural architecture in 
primates. Here, neural circuity is tightly coupled 
with synaptic storage, which eliminates the perfor-
mance and energy bottlenecks of shared-memory 
systems for machine learning inference [1]. 
Non-volatile memory (NVM) cells such as oxide-
based resistive switching random access memory 
(OxRRAM) can implement multilevel analog opera-
tions, which make them ideal candidates for storing 
model parameters, that is, the synaptic weights of a 
machine learning model [2].

For use as an inference hardware, trained model 
parameters are programmed as resistance states on 
OxRRAM cells of the hardware. Once programmed, 
the hardware is expected to perform inference con-
tinuously, without having to reprogram the model 
parameters. Unfortunately, OxRRAM cells suffer from 

the read disturb issue, 
where a cell’s resistance 
state may drift from its 
programmed value upon 
repeated access during 
inference [3]. We show 
that resistance drifts can 

lead to a lower inference accuracy.
One system-level technique to mitigate read dis-

turbances in a neuromorphic hardware is to peri-
odically reprogram the trained parameters to the 
OxRRAM cells of the hardware. Reprogramming of 
model parameters involves transferring the synaptic 
weights from the main memory (primary storage) to 
the neuromorphic hardware via bandwidth-limited 
memory channels (see Figure 11). Additionally, NVM 
cells require the long-latency program-and-verify 
(P&V) scheme to configure their resistance states 
[4]. These factors increase the time it takes to repro-
gram model parameters on OxRRAM cells. When a 
model is being reprogrammed, the hardware is una-
vailable to perform inference operations. Therefore, 
the performance overhead associated with periodic 
reprogramming is

	 reprogram overhead =
t

t

RPT
RPI

,� (1)

where tRPT defines the reprogramming time of the 
model and tRPI defines the interval at which the 
model is being reprogrammed to the hardware.
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We show that periodic reprogramming leads to a 
high system overhead even for smaller models like 
LeNet and AlexNet and is expected to become a 
critical performance bottleneck for emerging large 
models such as VGGNet, ResNet, and DenseNet. Our 
objective is to minimize this overhead by increasing 
the reprogram interval tRPI. To this end, we make 
the following three key observations.

Observation 1: Different synaptic connections of 
a machine learning model have different tolerance 
to resistance drift and they impact model accuracy 
differently.

Observation 2: OxRRAM cells in a neuromorphic 
hardware exhibit variation in read disturbance due 
to a difference in the exposed read voltage used dur-
ing inference.

Observation 3: Activation of a synaptic connec-
tion in a model is workload-dependent and it leads 
to a difference in the amount of resistance drift 
within the model.

Based on these three observations, we propose 
a system software framework that incorporates this 
application and voltage-dependent characteristics 
of read disturbance of OxRRAM cells in implement-
ing a machine learning model on the hardware. 
The key idea is to implement the synaptic weight of 
connections that have higher activations and lead to 
higher accuracy drop on NVM cells that are exposed 
to lower voltages during inference. In this way, we 
are able to sustain larger resistance drifts of synaptic 
weights before reprogramming of model parameters 
on OxRRAM cells becomes necessary.

A preliminary version of this system software 
framework is proposed in our prior work [5]. Here, 
we extend this framework in four key directions: 
1) introducing overhead due to reprogramming of 
model parameters as a key performance metric; 
2) extending the system software framework to peri-
odically reprogram model parameters to a neuro-
morphic hardware to maintain integrity of machine 

learning tasks; 3) a convex optimization formulation 
of cluster mapping to crossbar to reduce the sys-
tem overhead; and 4) exploiting machine learning 
model characteristics to identify non-critical model 
parameters and eliminating them from the critical 
path of deciding the reprogramming interval. In this 
way, our convex optimizer is able to increase the 
reprogramming interval compared to [5], thereby 
significantly reducing the system overhead.

We integrate the proposed system software frame-
work inside NeuroXplorer [6], a cycle-accurate sim-
ulator of neuromorphic hardware and evaluate it 
using five commonly used machine learning infer-
ence applications. Results demonstrate an average 
35% reduction of system overhead.

Resistance drift tolerance of machine 
learning workloads

Synaptic connections of a machine learning work-
load have varying tolerances to resistance drift. This 
impacts accuracy differently. To illustrate this, we 
consider 2-bit quantized versions of five commonly 
used convolutional neural networks (CNNs)—LeNet 
(1989), AlexNet (2012), VGGNet (2015), ResNet 
(2015), and DenseNet (2017). There are three weight 
levels used in these models, corresponding to ter-
nary values of −1, 0, and +1 [7]. Figure 1 illustrates 
the fraction of total synapses in the fully connected 
layer that leads to 1% or higher accuracy drop. We 
report results for the following four configurations: 
1) resistance reduction by two levels (“−2”); 2) resist-
ance reduction by one level (“1”); 3) resistance 
increase by 1 level (“+1”); and 4) resistance increase 
by two levels (“+2”).1 We make the following three 
key observations.

1 We note that if a synaptic weight is +1, then the synapse is tolerant to resistance 
drifts in the positive direction. Similarly, if a synaptic weight is −1, then the synapse 
is tolerant to drifts in the negative direction. Such cases are included in the results 
of Figure 1.

Figure 1. Fraction of total synapses in the fully connected layer that leads to accuracy 
drop due to resistance drift.
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First, synapses in a machine learning model have 
varying tolerance to resistance drift. On average, 
only 35% of synapses show accuracy drop when 
their resistance drifts by two levels in the negative 
direction, only 66% when resistance drifts by one 
level in the negative direction, only 60% when resist-
ance drifts by one level in the positive direction, and 
only 30% when resistance drifts by two levels in the 
positive direction. The reason for such variations is 
twofold. First, most machine learning models are 
over-parameterized. Therefore, resistance levels of 
noncritical synapses do not impact the accuracy. 
Second, due to the approximate training using the 
backpropagation algorithm, a drift in the resistance 
level of some synapses may not impact accuracy 
significantly. To this end, we note that the synaptic 
weight value of a noncritical synapse may not nec-
essarily be close to zero. It simply means that any 
change of its weight value may not impact accuracy. 
For this reason, any neuron and synapse pruning 
strategy such as [7] will not eliminate noncritical 
synapses that are nonzero.

Second, for LeNet, only a small fraction (less 
than 1%) of synapses lead to accuracy drop when 
resistance drifts by +1 and +2. This is because most of 
synaptic weights of LeNet are positive. So, any transi-
tion in the positive direction results in no significant 
accuracy impact.

Third, tolerance to resistance drift depends on the 
specific CNN model and therefore, model-specific 
solutions are needed. Our proposed approach is the 
following. First, we identify the critical synapses, that 
is, those that have high impact on accuracy by ana-
lyzing a CNN model. Next, we exploit device char-
acteristics and mapping alternatives to minimize the 
negative impact of resistance drift.

To motivate our solution, we discuss resistance 
drift in NVMs, focusing on OxRRAM devices.

Resistance drifts in NVM devices

OxRRAM technology
The OxRRAM technology presents an attractive 

option for implementing the synaptic cells of a cross-
bar due to its demonstrated potential for low-power 
multilevel operation and high integration density [2]. 
An OxRRAM cell is composed of an insulating film 
sandwiched between conducting electrodes forming a 
metal–insulator–metal (MIM) structure (see Figure 2). 
Recently, filament-based metal-oxide OxRRAM imple-
mented with transition-metal-oxides such as HfO2, 
ZrO2, and TiO2 has received considerable attention due 
to their low power and CMOS-compatible scaling.

Synaptic weights are represented as conductance 
of the insulating layer within each OxRRAM cell. 
To program an OxRRAM cell, elevated voltages are 
applied at the top and bottom electrodes, which rear-
ranges the atomic structure of the insulating layer. 
Figure 2 shows the high-resistance state (HRS) and 
the low-resistance state (LRS) of an OxRRAM cell. An 
OxRRAM cell can also be programmed into interme-
diate LRSs, allowing its multilevel operations.

Read disturbance issues of OxRRAM cells
In OxRRAM technology, the transition from HRS 

to one of the LRS states is governed by a sudden 
decrease of the vertical filament gap on application 
of a stress voltage during spike propagation [3]. This 
is illustrated in the left subfigure of Figure 3, where 
the vertical filament gap is shown to reduce by an 
amount h. This may result in a conducting filament 
(CF) between the two metal layers causing the resis-
tive state to change from HRS to LRS. The rate of 
change of the filament gap of the OxRRAM cell is
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dt
e h
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Figure 2. Operation of an OxRRAM cell with the HfO2 
layer sandwiched between the metals Ti (top electrode) 
and TiN (bottom electrode). The left subfigure shows 
the formation of LRS states with the formation of 
CF. The right subfigure shows the depletion of CF on 
application of a negative voltage on the TE.
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In the above equation, t defines the state transi-
tion time, g0 is the initial filament gap of the OxR-
RAM cell, V is the voltage applied to the cell, γ is 
the local field enhancement factor, which is related 
to the gap g, a0 is the atomic hoping distance, Ea is 
the activation energy, k is the Boltzmann’s constant,  
T is the temperature (in Kelvin), L is the length of 
the vertical filament, q is the filament charge, ϑ0 is 
a constant related to vertical filament growth, and  
γ0 and β are fitting constants.

The transition from one of the LRS states is gov-
erned by the lateral filament growth [3]. This is illus-
trated in the right subfigure of Figure 3. The time for 
state transition in the OxRRAM cell is given by

	 t V( ) . .LRS =
− ⋅ +10 14 7 6 7 sec � (3)

If the state transition time of an OxRRAM cell is 
1,000 ms, then a single quasi-static read operating 
using one 1,000 ms read pulse or equivalently, 1,000 
read accesses using 1-ms spike pulses can lead to an 
abrupt change in the cell’s state.2

From (2) and (3), we see that the state transition 
time of an OxRRAM cell depends heavily on the volt-
age of operation of the cell. To this end, we investi-
gate the internal architecture of a processing core in 
a neuromorphic hardware. In many recent designs, 
analog crossbars are used as cores. Figure 4 (left) 
shows an N × N crossbar, where the OxRRAM cells 
are organized in a 2-D grid with horizontal word-
lines and vertical bitlines. Presynaptic neurons are 
mapped along wordlines and postsynaptic neurons 
along bitlines, as shown in the figure. The synaptic 
weight between a presynaptic neuron (ni, placed 
on the ith wordline) and a postsynaptic neuron (nj, 
placed on the jth bitline) is programmed as conduct-
ance of the OxRRAM cell (i, j) located at the inter-
section of the ith wordline and jth bitline.

For forward propagation of neuron excitation, 
a spike voltage is created by ni, which generates a 
current that propagates to the neuron nj via the con-
ductance of the (i, j)th OxRRAM cell. Figure 4 (right) 
shows the parasitic components on such current 
paths. Formally, the number of parasitic compo-
nents on the current path via the (i, j)th OxRRAM 
cell is (i + j + 1).

Parasitic components on bitlines and word-
lines of a crossbar create variation in currents 

2 Apart from resistance drift, there are also other forms of reliability issues reported 
for OxRRAM in the context of neuromorphic hardware [8]–[11].

.

propagating via different OxRRAM cells of the crossbar;  
the higher the number of parasitic components, the 
smaller is the current, and vice versa. Therefore, the 
current through (0, 0)th OxRRAM cell is higher than 
(N − 1, N − 1)th OxRRAM cell in an N × N crossbar.

Figure 5 shows the difference between currents 
on the shortest and longest path for 32 × 32, 64 × 
64, 128 × 128, and 256 × 256 crossbars at a 65-nm 
process node. The input spike voltage of the presyn-
aptic neurons is set to generate 50 µA on the longest 
path. This current value corresponds to the current 
needed to read the resistance state of the OxRRAM 
cell on this path. We observe that the current on the 
longest path is lower than the shortest path by 13.3% 
for 32 × 32, 25.1% for 64 × 64, 39.2% for 128 × 128, and 
55.8% for 256 × 256 crossbar.

Figure 3. Read disturbances due to structural 
alteration in an OxRRAM cell. The left subfigure 
shows a reduction of the conductive filament gap (i.e., 
read disturbance of HRS state) on the application 
of a stress voltage. The right subfigure shows the 
lateral growth of the conductive filament (i.e., read 
disturbance of LRS state) due to application of a 
stress voltage.

Figure 4. N × N crossbar showing the parasitic 
components within.
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Current variation in a crossbar leads to a differ-
ence in the voltage applied across different OxRRAM 
cells in a crossbar. This is illustrated in Figure 6a, 
where the minimum and maximum voltages are 0.4 
and 0.57 V, respectively. Such voltage differences 
cause variation of the state transition time [see 

(2) and (3)]. Figure 6b shows such variation for 
OxRRAM cells in the crossbar, with each cell pro-
grammed to the HRS state. The minimum and maxi-
mum state transition times are 5,227 and 31,214 ms, 
respectively.

In a recent work, we have shown that the unit par-
asitic resistance of bitlines/wordlines increases from 
1 Ω at 65 nm to 3.8 Ω at 16 nm [10]. Such increase 
in the value of parasitic resistance leads to a higher 
voltage applied across each OxRRAM cell in the 
crossbar, which further reduces its state transition 
time. To illustrate this, Figure 7 shows the variation 
in state transition time of OxRRAM cells in a crossbar 
at different process technology nodes. We make the 
following two key observations. First, the state transi-
tion time decreases with technology scaling. This is 
due to an increase in the voltage within the crossbar 
at scaled nodes. Second, the variation of state tran-
sition time increases at smaller nodes due to higher 
voltage and current variations [10].

Finally, the state transition time of OxRRAM 
cells also depends on the resistance state. Figure 
8 shows the dependence of the minimum state 
transition time of OxRRAM cells in a crossbar for 
the four process technology nodes. We make two 
key observations. First, the state transition time 
reduces with technology scaling, which we have 
analyzed before. Second, the state transition time 
of an OxRRAM cell is higher when the cell is pro-
grammed in the HRS state for all process technol-
ogy nodes. This is because the vertical filament 
growth phenomena (in the HRS state) in OxRRAM 
technology is slower than the lateral filament 
growth (in the LRS state).

During each inference operation, OxRRAM cells 
of a crossbar propagate spikes from a machine learn-
ing workload. To compute the inference lifetime of 
an OxRRAM cell, which is defined as the number of 
inference operations, it takes for the resistance state 
of the cell to drift from its programmed value, we let η 
be the average number of spikes through the cell per 
inference operation. Formally, inference lifetime L is 

	 L =
t( / )LRS HRS

η

� (4)

To ensure integrity of machine learning, that is, 
to prevent accuracy drop, the OxRRAM cell must be 
reprogrammed to the original resistance state once 
every inference lifetime. Since different OxRRAM 
cells in a neuromorphic crossbar have different 

.

Figure 5. Difference between current on the shortest 
and longest paths in a crossbar for different crossbar 
sizes.

Figure 6. Variation of voltage and state transition 
time in a 128 × 128 crossbar. (a) Voltage variation 
in a 128 × 128 crossbar at a 65-nm node. (b) State 
transition times in a 128 × 128 crossbar with all cells 
programmed to the HRS state.

Figure 7. Variation in state transition time of OxRRAM 
cells in a crossbar as a function of current.

Figure 8. Variation in state transition time of OxRRAM 
cells in a crossbar as a function of the resistance 
state.
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inference lifetime, the reprogramming interval tRPI 
of model parameters to the hardware [see (1)] is 
defined as the minimum inference lifetime of all 
OxRRAM cells in the crossbar, that is,

	 t
i j

i jRPI min=
∀ ,

,L � (5)

The number of spikes propagating through an 
OxRRAM cell depends on the machine learning 
workload and how the workload is mapped to the 
crossbar. This is described next.

Workload dependency of inference 
lifetime

To understand the workload dependency of 
inference lifetime, we focus on (9). Here η is the 
average spikes per image through an OxRRAM cell 
implementing the machine learning workload. This 
is computed as follows. Consider our machine learn-
ing model is represented as M(N, S ) with the set 
N of neurons and the set S of synapses. If xi is the 
number of spikes communicated from a presynap-
tic neuron to a postsynaptic neuron via si, then the 
total number of spikes for the image is xii∑

. In our 
implementation, each synapse (i.e., its weight) is 
programmed on an individual OxRRAM cell. There-
fore, the number of spikes through all OxRRAM cells 
of the hardware is xii∑

. We compute the average 
number of spikes per image through an individual 
OxRRAM cell as the sum of spikes for all images 
inferred by the model averaged over the number of 
images and synapses, that is,

	 Avg. Spike Per Image =
×

∑∑
=

x

I S

iij

I

1 ,� (6)

where I is the number of images inferred by M.
Figure 9 shows the histogram of average spikes per 

image propagating through the synapses of VGGNet. 
We collected these statistics by analyzing CIFAR-10 
training and test data sets. We see that there are 20 
synapses in the model that communicate between 1 
and 2 spikes per image, 30 synapses that communi-
cate between 2 and 3 spikes per image, and so on. 
Therefore, some synapses propagate more spikes 
than others.

If we consider two different synapses of a model 
with different spike count, then the one with a higher 
number of spikes will result in a lower inference life-
time when mapped to the OxRRAM cell at a specific 
position in the crossbar.

.

Additionally, the spike count on a synapse also 
depends on the input presented to a model. To illus-
trate this, Figure 10 plots the spike firing rate of 100 
randomly selected neurons in VGGNet. We observe 
that the spike firing rate of a neuron in VGGNet 
depends on the image presented to the model.

The proposed design methodology incorporates 
such application and model-dependent behavior to 
better optimize the synapse mapping to OxRRAM 
cells. This is described next.3

Proposed design methodology
Figure 11 shows the proposed system architecture 

designed in NeuroXplorer [6]. A machine learning 
model is first trained using training data. The model 
parameters are stored in memory. The trained model 
is clustered using the graph partitioning algorithm of 
NeuroXplorer. For each cluster, an optimization is 
performed to map the neurons and synapses of the 
cluster to the OxRRAM cells of a crossbar, by exploit-
ing: 1) spike data collected from the training set 
and 2) technology-specific state-transition time data 
obtained from characterizing the hardware. The 
cluster optimization step generates the parameter 
reprogramming interval tRPI, which is then used to 
periodically reprogram the model parameters to the 

3 The scope of the current work is on design-time approaches in mitigating resist-
ance drift. Our future work will involve designing a run-time framework to evaluate 
spike count of synapses based on the model input and enable remapping of the 
synaptic connections to further reduce the system overhead.

Figure 9. Spike distribution across the synapses of 
VGGNet.

Figure 10. Spike rate of 100 randomly selected 
neurons in VGGNet for two training images and two 
test images.
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hardware via bandwidth-limited memory channels. 
The new blocks that we introduce in NeuroXplorer 
are shown in red in Figure 11.

We introduce the following notations to formu-
late the cluster optimization problem.

M = Set of presynaptic neurons of a cluster. 
   N = Set of postsynaptic neurons of a cluster. 
     S = Set of synapses of a cluster .
ηi,k = Spikes on the synapse si,k ∈ S.
  ej,l = �State transition time of the ( j, l )th OxRRAM 

cell in a crossbar.

 xi, j = { �1, � if presynaptic neuron mi ∈ M is 
mapped to crossbar input Ij

	  0,  otherwise.

yk,l =
 { �1, � if postsynaptic neuron nk ∈ N is 

mapped to crossbar output Ol 
	  0,  otherwise.

Following are the constraints.
•	 A presynaptic neuron can be mapped to exactly 

one input port of a crossbar, that is,

	 x ii j

j

, .
∀

∑ = ∀1 � (7)

•	 A postsynaptic neuron can be mapped to exactly 
one output port of a crossbar, that is,

	 y kk l

l

, .
∀

∑ = ∀1 � (8)

We formulate the optimization problem as fol-
lows. xi,j ⋅ yk,l defines the mapping of synapse si,k ∈ S 

to the ( j, l )th OxRRAM cell in the crossbar. The infer-
ence lifetime of this mapping is

	 Li j k l
j l

i k

e
, , ,

,

,
.=

η
� (9)

The optimization problem is

	 Maximize t x y
i j k l

i j k l i j k lRPI min= ⋅ ⋅
∀ , , ,

, , , , , .L � (10)

The nonlinear operation of multiplication of two 
binary variables xi, j, and yk, l is linearized by introduc-
ing a new product variable zi, j, k, l, with the following 
additional constraints.
•	 If xi, j = 0 and/or yk, l = 0, then zi, j, k, l = 0, that is,

	 z x z yi j k l i j i j k l k l, , , , , , , , .≤ ≤ and � (11)

•	 If xi, j = 1 and yk, l = 1, then zi, j, k, l = 1, that is,

	 z x zi j k l i j i j k l, , , , , , , .≥ + −1 � (12)

The new optimization problem is

	 Maximize min
∀

⋅
i j k l

i j k l i j k lz
, , ,

, , , , , , .L � (13)

This max–min optimization problem is a convex 
one [proof of Karush–Kuhn–Tucker (KKT) condi-
tions are omitted for space limitations]. The problem 
can be solved using CVXPY by introducing a slack 
variable τ as

	 Maximizeτ τ , , , ., , , , , ,� ≤ ⋅ ∀z i j k li j k l i j k lL � (14)

To incorporate the criticality of a synaptic con-
nection, we assign a very small number as the spike 
count η for the synapse. In other words, the spike 
count of critical synapses is identified using the train-
ing set, while those for noncritical synapses are set to 
a very small value. In this way, we force L [see (9)] 
to a very large value for the noncritical synapses. 
This allows the convex optimizer to eliminate them 
from the critical path of determining the reprogram-
ming interval tRPI [see (14)].

Results and discussion
We evaluate the proposed design methodology 

for OxRRAM-based neuromorphic hardware. We 
configure NeuroXplorer with the hardware parame-
ters listed in Table 1.

We use five commonly used CNN applications 
with 2-bit quantized synaptic weights. These applica-
tions are described in Table 2.

Figure 11. System architecture.

 
Table 1. Major simulation parameters extracted from [2].
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We evaluate the following techniques.
•	 SpiNeMap: This baseline approach first clusters a 

machine-learning inference model to minimize 
the intercluster spike communication [12]. Clus-
ters are then mapped to crossbars of a neuro-
morphic hardware with synapses of each cluster 
implemented randomly on OxRRAM cells of a 
crossbar.

•	 Endurer: This is our previous work, which 
addresses the reprogramming of model parame-
ters on crossbars of a neuromorphic hardware to 
maintain model integrity [5]. A machine learning 
model is clustered using SpiNeMap. Clusters are 
placed to crossbars to maximize inference life-
time. To map cluster synapses to the OxRRAM 
cells of a crossbar, Endurer uses a binary nonlin-
ear optimization problem formulation.

•	 Proposed: The proposed approach is based 
on Endurer. It introduces the following two 
new changes to Endurer: 1) it characterizes a 
machine learning model to identify noncritical 
synapses such that they could be eliminated 
from the critical path of determining the repro-
gramming interval and 2) the convex optimiza-
tion formulation and the proposed linearization 
technique improves the solution quality and 
improves the speed-up, accelerating the design 
space exploration.

Accuracy
Figure 12 reports the accuracy improvement due 

to periodic reprogramming of model parameters in 
Endurer and the proposed approach compared to 
SpiNeMap, where no reprogramming is performed. 
We observe that by enabling reprogramming of 
model parameters, model accuracy can be improved 
by 25% (between 3% and 87%). This is because, with-
out periodic reprogramming in place, model param-
eters may drift due to frequent accesses of OxRRAM 
cells where these parameters are programmed. 
Parameter drift leads to lower accuracy. Addition-
ally, the extent of accuracy impact depends on 
the specific model that is programmed to the hard-
ware. For AlexNet, we observe a 47% drop, while for 
ResNet and DenseNet, the drop is only 4%.

System overhead
Figure 13 reports the system overhead of the pro-

posed approach compared to Endurer for the evalu-
ated CNNs. Results are normalized to Endurer. Since 

SpiNeMap does not involve periodic reprogram-
ming, there is no system overhead. We have there-
fore not shown SpiNeMap in the figure.

We observe that the system overhead of the pro-
posed approach is on average 35% lower than Endurer 
(between 23% and 50%). This improvement is due to 
the increase of reprogramming interval in the proposed 
approach. Such improvement is attributed to two fac-
tors. First, noncritical synapses are not on the critical 
path for determining the reprogramming interval tRPI 
in the proposed approach, while such synapses are 
factored in determining tRPI in Endurer. Second, the 
convex optimizer CVXPY of the proposed approach 
generates a better solution than the approximate binary 
nonlinear optimization technique of Endurer.

We also observe that the improvement is usually 
higher for models with higher fraction of noncritical 
synapses. Therefore, the improvement for ResNet is 
higher than LeNet.

In this work, we study the resistance drift-related 
reliability issues in OxRRAM-based neuromorphic 
hardware used to implement machine learning 
inference models. Through circuit-level simulations, 

Figure 13. Overhead improvement of the proposed 
approach.

Figure 12. Accuracy improvement due to periodic 
reprogramming.

 
Table 2. CNN applications used to evaluate the proposed design.
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we show the dependence of these issues on: 1) the 
resistance state of an OxRRAM cell (model param-
eter dependency); 2) the current through the cell 
(circuit dependency); and 3) the spikes propagat-
ing through the cell (workload dependency). We 
incorporate this study in a system software frame-
work and show a significant accuracy drop due to 
resistance drift. To maintain the integrity of machine 
learning inference, model parameters need to be 
reprogrammed to the hardware periodically, which 
incurs a significant system overhead. We propose 
an approach to minimizing this system overhead by 
first analyzing a machine learning model to identify 
noncritical synapses and then proposing a convex 
optimization solution to maximize the reprogram 
interval. The proposed optimizer eliminates the 
noncritical synapses from the critical path of deter-
mining the reprogram interval. Evaluations with five 
commonly used CNN applications show an average 
35% improvement in the system overhead.� 
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Using STLs for Effective 
In-Field Test of GPUs

 Modern graphics processing units (GPUs) 
are manufactured using cutting-edge technologies 
but are prone to suffer from in-field errors and reliabil-
ity issues [1]. The flexibility and computational power 
of GPUs push their adoption in developing advanced 
driver-assistance systems (ADASs) and sensor fusion 
solutions in the automotive and autonomous systems 
domains. However, the premature aging and wear-out 
features in new transistor technologies promote the 
rising of permanent faults during the in-field opera-
tion. In safety-critical applications, unaffordable fail-
ures caused by faults can induce the entire system 
to fail or even result in catastrophic consequences if 
no appropriate measures are taken promptly. Hence, 
the development of countermeasures for the in-field 
detection of faults is of great importance in GPUs.

Published works, 
addressing in-field fault 
detection for GPUs, can 
be classified into three 
classes: 1) design for 
testability (DfT) meth-
ods, which are purely 

hardware-oriented; 2) hybrid approaches, which 
combine hardware structures with reconfigur-
able capabilities at the software level; and 3) soft-
ware-based self-test (SBST) solutions. DfT schemes 
are widely used for the end-of-production test in cur-
rent devices. However, they are not always available 
for in-field operation and may not satisfy time con-
straints in many applications. Furthermore, hybrid 
solutions, based on the addition or use of available 
structures (i.e., performance counters) to extend the 
fault observability of a module, must be included in 
the design phases by modifying the hardware–soft-
ware interface to provide instruction-based control 
of the included structures. Jagannadha et al. [2] 
proposed an in-system-test architecture based on the 
combination of DfT schemes and hybrid structures 
to detect faults and provide diagnosis features dur-
ing the in-field operation of system-on-chips (SoCs) 
and GPUs. However, a massive effort is required to 
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develop and integrate a coordinated ecosystem to 
design and verify the device. On the other hand, the 
SBST strategy is a noninvasive and flexible approach 
to perform functional in-field tests of proces-
sor-based systems, which has been widely adopted 
in processor testing [3]. Nowadays, semiconductor 
companies and IP providers give SBST support for 
their safety-critical products (e.g., automotive). In 
detail, the SBST strategy resorts to specially written 
software-test libraries (STLs) composed of suitably 
developed test programs (TPs) able to achieve a 
given structural fault coverage (FC) when run by the 
CPU with limited or null external support. A TP is a 
suitable sequence of selected instructions applying 
test patterns to a given unit and propagating fault 
effects up to some observation points. These are 
typically developed starting from high-level abstrac-
tions of a design (RT-level) and then progressively 
reaching and refined at lower levels (Gate-level). 
Moreover, TPs can often be split into small chunks 
of code fitting in the idle times of an application and 
thus more easily matching time constraints. In the 
past, numerous works developed effective STLs for 
CPUs. However, only a few works used SBST strat-
egies for in-field tests in GPUs. Clearly, some of the 
techniques used for CPUs can be extended to GPUs 
as well. Nevertheless, GPUs have some specific fea-
tures and characteristics (e.g., implicit parallelism, 
parallel scheduling, and shared memory manage-
ment), which demand special strategies to test the 
corresponding hardware modules. Di Carlo et al. [4] 
adopted several processor-based techniques into TPs 
for the execution units, register files, and main mem-
ories in a GPU. Nevertheless, observability issues 
restricted the assessment of the FC. Another work 
[5] addressed the test of control units (scheduling 
controller). However, the development of custom-
ized approaches was required. In conclusion, prior 
works on in-field tests are unaffordable due to huge 
complexity and intrusiveness (DfT and hybrid cases) 
or suffer from generality (SBST case), making them 
not fully suitable for GPUs. Hence, there is a need of 
providing a complete solution for in-field tests.

This work, for the first time, evaluates the over-
all effectiveness of employing the SBST strategy for 
the in-field test of all logic modules of a GPU core. 
Moreover, this work experimentally quantifies the 
FC achievable on the logic modules in a GPU core. 
Finally, it evaluates how suitable STLs can support the 
failure modes and effects analysis (FMEA) required 

in all safety-critical domains. The main contributions 
of this work can be summarized as follows.

•	 A general overview of the characteristics and 
strategies to develop STLs for GPUs.

•	 An evaluation (the first publicly available, to the 
best of our knowledge) of the overall FC obtained 
on a GPU core with the STL execution.

•	 A report about the failure modes effects and diag-
nostic analysis (FMEDA) process on a GPU core 
using STLs as the only fault-tolerance mechanism.

This work resorts to the FlexGripPlus model, 
describing one low-level microarchitecture of 
NVIDIA, to evaluate and validate the development 
of STLs for GPUs. The experimental results show 
that up to 92.6% of the stuck-at faults (SAFs) in the 
logic blocks of a GPU core can be covered using the 
STLs we developed. The FMEDA analysis shows that 
these results enable to qualify the considered mod-
ules inside a GPU core via STLs at least for the ASIL 
B level. Higher levels can be achieved by combining 
the STLs with other safety mechanisms.

Architectural organization of GPUs

General overview
This section employs NVIDIA’s terminology to 

describe the architectural organization of a GPU.
GPUs are special-purpose processors organized 

as arrays of parallel cores [streaming multiproces-
sors (SMs)]. Each SM adopts the single-instruction 
multiple-data (SIMD) paradigm or variations, such as 
single-instruction multiple-thread (SIMT) by NVIDIA. 
Internally, each SM comprises several pipeline stages 
and uses a specific instruction set architecture partly 
resembling RISC ones with extensions to support 
parallelism.

A host controller (CPU) submits a parallel pro-
gram to the GPU for processing. Then, the program 
is distributed among the available SMs by the sched-
ulers. Internally, the scheduler controllers man-
age and trace the operation of a group of threads 
(warp), which are operated in parallel on individual 
execution units [scalar/streaming processors (SPs)]. 
Each SP is composed of an integer (INT) and a float-
ing-point core (FP). Moreover, the SM includes other 
hardware accelerators (SFUs) as well.

Each SM has access to several levels of the mem-
ory hierarchy (register file, shared, local, constant, 
and main memory). The register file and the shared 
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memory are organized in banks for parallel access 
and store the individual and shared operands and 
results for each thread, respectively. Both resources 
and the first levels of cache are located inside the 
SM. The second-level caches, the constant, and the 
main memories are located outside as a shared 
resource among the SMs.

FlexGripPlus model
FlexGripPlus is an open-source soft-GPU model 

based on the NVIDIA G80 microarchitecture and 
fully described in VHDL [6]. FlexGripPlus is compat-
ible with the CUDA programming environment (SM 
1.0) and is based on a set of SMs supporting up to 52 
assembly (SASS) instructions.

Each SM is divided into five pipeline stages (Fetch, 
Decode, Read, Execute/Control-Flow, and Write), as 
shown in Figure 1. The number of SPs in the Execute 
stage is configurable among 8, 16, or 32. Moreover, 
pipeline registers (“PRx”) are located between the 
pipeline’s stages. Each SM also includes three regis-
ter files (Vector Register File “VRF”), (Address Regis-
ter File “ARF”), and (Predicate Register File “PRF”), 
devoted to storing operands, addresses, and predi-
cate flags of each thread, respectively.

Each SM includes one scheduler controller and a 
divergence management unit (DMU) for intra-warp 
divergence control and execution.

In general, the FlexGripPlus model holds the same 
basic functional modules of a commercial GPU, 
including scheduler controllers, parallel execution 
units, file registers, and pipeline stages. Nevertheless, 
the current memory hierarchy in FlexGripPlus differs 
from the included in commercial devices by missing 
the cache memories.

Despite the few structural limitations, the Flex-
GripPlus model includes a low-level detailed 
microarchitectural description of an NVIDIA GPU 
and is employed as a tool to evaluate the effective-
ness of STLs for GPUs developed using the SBST 
strategy.

SBST strategies for GPUs
STLs developed with the SBST strategy can be 

deployed as complementary mechanisms to moni-
tor the status of a GPU during its operative life and 
contribute to identifying possible fault effects. In 
fact, the main advantage of STLs is the ability to 
detect faults with zero hardware costs. Moreover, 
STLs test a device at the operational speed and nor-
mal conditions, thus also addressing delay faults and 
avoiding overtesting.

In the functional-safety domain, the identification 
and management of faults in a device are manda-
tory. Some faults can be classified as safe, when they 
are proved not to be able to produce any failure in 

Figure 1. General scheme of an SM in FlexGripPlus.
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the considered operational scenario. Safe faults are 
not considered when computing the achieved FC.

In this domain, STLs can be used as safety mech-
anisms and increase reliability by guaranteeing the 
in-field detection of a sufficient percentage of faults, 
thus matching the requirements of the functional 
safety standards, possibly in combination with other 
mechanisms (e.g., ECC for memories, and watch-
dogs). STLs are widely used for CPUs but they can 
also be adopted for accelerators, such as GPUs, 
which demand periodic testing solutions when used 
in safety-critical applications. In this case, we must 
consider two main features: 1) most in-field faults 
in GPUs can only be observed by looking at results 
they produce in memory (as the main observation 
point) and 2) the development of TPs requires 
architectural details from a targeted unit. In gen-
eral, any TP is mainly executed following four steps: 
1) initialization; 2) test pattern’s injection; 3) fault 
effect’s propagation to any observation point; and 
4) identification (see Figure 2). In the execution of 
a TP, several loops can apply different test patterns 
or propagate their effects. However, TPs for GPUs 
must face the addressing of each module exploiting 
the implicit parallelism and operational constraints 
(e.g., divergence and thread-synchronization). For 
this purpose, these TPs must exploit three main char-
acteristics of the parallel operation of GPUs.

•	 Instruction parallelism.
•	 Distributed scheduling.
•	 Management of functional units and memory 

resources.

The following sections summarize some specific 
strategies and algorithms used in the development 
of TPs for STLs targeting GPUs. It should be noted 
that each GPU module may require a combination 
of different approaches. Fortunately, one TP may tar-
get the test of several modules in parallel.

Extending functional test techniques from 
CPUs to GPUs

Two approaches originally developed for CPUs 
can be adopted and extended to the GPU domain: 
automated and deterministic [3], [7].

On the one hand, the automated approaches 
comprise pseudorandom- and ATPG-based meth-
ods. The first method focuses on TPs based on a 
group of instructions randomly selected in combi-
nation with pseudorandom operand values. This 

method can exploit evolutionary algorithms to select 
the most suitable instructions and operands for a TP. 
The second method resort to Automatic Test Pattern 
Generation (ATPG) tools to analyze and extract test 
patterns from a hardware module. Then, these pat-
terns are translated into equivalent instructions, so 
composing one or more TPs. However, it is possible 
that some test patterns cannot be translated and 
must be ignored (possibly resulting in safe faults). In 
both cases, several iterations are used in the devel-
opment of each TP to improve its correct operation 
and reduce unnecessary overhead costs for the 
in-field operation.

In any case, TPs using either automated or deter-
ministic approaches must include three strategies: 1) 
parallel pattern management (PPM); 2) signatures 
per thread (or SpT) [9]; and 3) parallel injection.

The first strategy (PPM) organizes and aligns simi-
lar test patterns and expected results as consecutive 
memory operands, so optimizing the performance 
in memory management and exploiting possible 
execution loops. Then, each thread in the TP can 
address individual or shared test patterns from 
memory.

The SpT mechanism is based on the computa-
tion, within each thread in a TP, of a signature pro-
viding fine-grain fault-observability out of the values 
produced by the target module during its operation, 
thus propagating fault effects as errors on the com-
puting signature and allowing fault detection. Each 
SpT is described and computed in software by mim-
icking a multiple-input shift register or a counter, 
which reduces the number of instructions per TP 
while providing extended observability. In the end, 
each SpT is stored in memory. The GPU itself (or the 
host) checks for the presence of faults by comparing 
a produced signature with the expected one, which 
is precalculated by the TP itself (in the development 
and verification phases) with minimal performance 
overhead (<5%) and finally stored in specific mem-
ory regions available during the operation of the TPs. 
Those precalculated golden signatures avoid laten-
cies at the in-field operation of TPs.

The parallel injection techniques take advantage 
of thread parallelism in warps or blocks to excite a 
module with different test patterns (one per thread), 
thus exploiting parallelism to increase the opera-
tional performance of a TP, which is effective in 
either individual unit or regular structures.
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Pseudorandom and ATPG-based approaches are 
effective in regular structures of a GPU, such as the 
functional units and the register file, since these struc-
tures are addressed (and tested) in parallel. Moreo-
ver, the static organization and the understanding 
of distribution policies in the schedulers allow the 
development of embarrassingly parallel TPs (see 
Figure 2), exploiting the multithread parallelism to 
inject patterns and also reducing the in-field exe-
cution of TPs [8]. On the other hand, deterministic 
approaches exploit the functionality and structure in 
a module to deploy well-defined algorithms, such as 
March algorithms for internal memories (e.g., within 
the controllers) [4].

It must be noted that, when using a deterministic 
approach, the adaptation of a method may require 
additional steps (i.e., initialization and propagation 
patterns) to face the parallel operational constraints 
in a GPU, but additional efforts are required to con-
trol intrawarp divergences, thread synchronizations, 
and concurrent loops when injecting test patterns, as 
depicted in Figure 2.

Multikernel approach
TPs in this approach utilize a divide-and-conquer 

strategy to target special modules commonly man-
aging configuration parameters devoted to con-
trolling and configuring the parallel operation in a 
GPU. These configuration parameters (i.e., memory 
addresses, number of threads, blocks, grids, and 

registers per thread) come from the program and 
configure modules (i.e., the constant memory and 
the schedulers) for the operative interval of the 
program.

In this case, multiple TPs (kernels) employ the pol-
icies of scheduling and the resource’s management 
to target a different set of faults inside a module. 
More in detail, each TP uses different combinations 
of configuration parameters, which also serve as 
indirect test patterns, so activating different regions 
(and exciting possible faults) in a module. The mul-
tikernel approach is effective when testing modules 
managing parallel parameters, such as the sched-
uling controllers and the pipeline registers. Further 
details can be found in [9]. Finally, this approach 
can be extended to other modules with similar fault 
activation and propagation restrictions (i.e., global 
schedulers outside the SM).

Modular kernel approach
This approach exploits a top-down strategy to 

develop modular routines to build TPs for complex 
units in a GPU. The modular description of a routine 
starts from a high abstraction level and is then cus-
tomized. In this approach, the most suitable instruc-
tions to activate and propagate faults inside the 
target unit are selected considering two factors: 1) 
the parallel observability and controllability features 
and 2) the architectural description and operational 
constraints of a target unit.

Figure 2. General scheme of the execution flow of TPs for CPUs and GPUs.
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First, the controllability and observability features 
are determined for a target unit. In this case, suitable 
instructions (i.e., “Push” and “Pop” in a stack) are 
used to provide both features as initial conditions 
in a TP. Then, several routines to inject test patterns 
while exploiting parallelism are designed (in CUDA 
or SASS) and linked, considering the operational 
constraints of the unit. These routines are the basic 
components of a TP and describe the operation of 
any thread. The flexibility of the approach allows the 
development and exploration of several parallel rou-
tines providing the same functionality. Moreover, the 
execution flow in a TP can be adopted according to 
the selected routines. Finally, the routines are inte-
grated as a single TP and refined for performance 
or FC.

The modular approach is effectively applied to 
complex units in a GPU, such as the DMU and the 
embedded memories [10].

Customs approaches
The custom approaches require the manual devel-

opment of TPs following some specific algorithm 
that takes into account the architecture of the units, 
their functional operation, the expected behavior, 
their restrictions, and the target fault model. These 
TPs target particular modules in the GPU, which do 
not exist in CPUs (such as the scheduler controllers 
[5] and the special-purpose memories [4]). In detail, 
the TPs are based on algorithms causing controlled 
divergence, the combination of sequences of embar-
rassingly parallel, and serial-thread executions on a 
set of threads to excite and propagate fault effects.

This approach requires a deep knowledge of the 
GPU’s low-level microarchitectural details, their par-
allel operations and the use of parallelism, distrib-
uted scheduling, and available hardware resources 
to provide specific test solutions per module.

Setup and preliminary GPU analysis
The evaluation of the STLs (developed using 

all techniques described in the previous section) 
resorted to a commercial fault simulation environ-
ment targeting the units in the FlexGripPlus model. 
This framework uses the RT-level description of the 
GPU and evaluates each TP by injecting SAFs into 
the logic of every logic module.

In the experiments, we targeted the evaluation of 
all logic modules and embedded memories in the 
GPU core. One fault is detected when at least one 

mismatch is found after comparing results from a 
golden execution and a faulty one. The flexibility of 
the tool allows the selection of the memory buses 
and the output control signals as the main in-field 
observation points of faults. It is worth noting that the 
main memory and the memory controllers were not 
targeted, since these are not part of the GPU core. 

Three preliminary architectural analyses identi-
fied safe faults in the GPU. The first analysis is based 
on the architectural propagation analysis, which 
consists of evaluating the propagation paths of each 
fault in the design up to the observability points. In 
addition, the fault activation analysis evaluates the 
inputs of the GPU and identifies those faults that can-
not be excited. Finally, a barrier analysis provides 
the analysis of the structural and operational effects 
of removing modules in the GPU [11].

Table 1 reports the number of identified safe faults 
in the FlexGripPlus SM. Interestingly, the fault propa-
gation analysis effectively identified most of the safe 
faults per module (>90%). The other two methods 
effectively identified faults in the GPU’s special struc-
tures, such as inside the scheduler. A postchecking 
process was required to determine any detectable 
and dangerous fault (i.e., faults in locations that 
remain temporarily fixed by the effect of the kernel 
or host configuration, but in other conditions, these 
may cause misbehaviors), so removing them from 
the list of safe faults.

STL effectiveness evaluation
In the experiments, FlexGripPlus was configured 

with one SM and 32 SPs. A set of 18 TPs were imple-
mented using the methods outlined in the previous 
section. Each TP is developed according to the unit’s 
features.

Three automatic TPs targeted the functional units 
and the decode unit by exploiting instructions that 

 
Table 1. Untestable fault identification.
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excite as many patterns (operands) as threads on 

them. Moreover, three deterministic and modular 

TPs targeted the embedded memories, using the 

operational features (writing and reading methods) 

to excite the units. Nine TPs used the multikernel 

approach targeting programmable pipeline registers. 

Finally, three custom TPs focus on exciting control-

lers and dispatchers in the GPU.

In the end, 15 fault injection campaigns were per-

formed on the complete GPU model, after generat-

ing the full list of SAFs, safe faults were first removed. 

Moreover, in the fault campaigns, the total number 

of faults (327,207) was reduced by injecting faults 

only in one module among the regular modules 

in the GPU (i.e., one SP and the associated regis-

ter file per core, instead of the 32 execution units). 

As a result, in each fault simulation campaign, we 

injected 141,140 SAFs.

Since the current version of FlexGripPlus does 

not include accurate descriptions of the caches, the 

memory controllers were not addressed.

Table 2 reports the obtained FC figures. As 

observed, the developed STLs mainly focused on the 

largest modules in the GPU’s core architecture, such 

as the execution units, internal logic, and embed-

ded memories, which account for more than 90% 

of faults in an SM. Although some TPs provide mod-

erate fault detection in some modules of the GPU 

(e.g., controllers), the small size of these structures 

does not significantly affect the overall FC in the GPU 

core. Further efforts could be made to develop suita-

ble TPs specifically addressing these modules.

Previous results demonstrate that STLs can 

be effectively developed and provide a high FC. 

Although the obtained results were focused on 

one GPU core, the implemented TPs are scalable 

and results can be extended to multi-SM GPUs. 

Furthermore, the development of STLs can be 
applied to other GPU architectures.

Functional-safety evaluation
The calculation of the FC is an indication of the 

design safety based on the efficiency of a given 
safety mechanism (SMech). However, it is not suf-
ficient to assure compliance with functional safety 
standards, like ISO26262; for such a purpose, we 
need to determine the reduction in the probability 
of system failures, also known as the failure in time 
(FIT) rate. The single-point faults metric (SPFM), 
which represents permanent faults’ potential to 
violate safety-related functionalities, is defined by 
ISO26262 as evidence of safety integrity [12]. The 
SPFM considers the total FIT rate (λ) and the contri-
bution of the fault classes.

•	 Single-point faults (λSPF): Not covered by 
SMechs.

•	 Residual faults (λR): Undetected by SMechs.

The SPFM can be calculated according to

	
SPFM = −

∑ +( )

∑

1
λ λ

λ

SPF R
.
�

(1)

The primary methodology for determining the 
safety metrics parameters is the FMEDA, which cor-
relates IC components (Gates, Flip-flops, and Memory 
cells) to failure modes (FMs). Then, by computing λ 
of individual IC components, the FC, and the Safe 
faults, we can determine the total λ of each FM.

First, the FMs are defined and the design com-
ponents mapped. For FlexGripPlus, we considered 
28 subparts (components inside the GPU core, 
including local controllers, functional units, embed-
ded memories, and registers). Each subpart was 
analyzed to determine function-specific FMs. After 
mapping each FM to the appropriate design com-
ponent(s), we evaluate the percentage of Safe faults 
and the FC. The FlexGripPlus’ FMEDA comprises 92 
FMs mapped to 2,751,088 gates, 1,507,085 flops, and 
784,224 memory cells.

The analysis of FlexGripPlus, considering the 
15-nm FinFET-based Open Cell Library, resulted in a 
total λ of 10.08 FIT (based on IEC 62380 Electronic 
Reliability Prediction Standard), which defines a 
base FIT Rate for the components of a given tape-out 
technology. In this case, the unit’s base FIT consid-
ers digital (NAND2 gate’s area) and memory (cell’s 
area) components. Then, we multiply the number 

 
Table 2. FC results per module.
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of gates and cells, mapped to each FM, by the dig-
ital and memory FITs, respectively; from these, the 
implemented safety strategies provide the following 
results:

•	 Detected by the STL: 9.17 FIT. 
•	 Undetected (λR): 0.57 FIT.
•	 Safe faults (λS): 0.33 FIT.

Finally, reducing λR by increasing λS and FC 
directly impacts the SPFM. The proposed Safety tech-
nique based on only STLs for FlexGripPlus resulted 
in an SPFM of 94.27%, allowing ASIL B assessment 
without hardware modifications to the logic units of 
an SM and without any other SMech.

This work is the first to provide a quantitative eval-
uation of the effectiveness of STLs for the in-field test-
ing of GPU cores. The reported results showed that an 
SAF coverage of more than 92% could be obtained 
on the logic modules and embedded memories. The 
functional-safety results (SPFM of 94.27%) show the 
effectiveness of STLs as a safety mechanism for SMs 
in GPUs.

The results allow us to state that the SBST strat-
egy can be used as an effective solution, possibly 
combined with other strategies, to guarantee the 
reliability and functional safety of GPU-based appli-
cations for safety-critical domains.� 
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T-Topology Coupler-Based 
Bandpass Negative 
Group Delay Active Circuit 
Design and Test

 The counterintuitive negative group delay 
(NGD) function was theoretically and experimen-
tally investigated with low-frequency circuit topol-
ogies in the 1990s [1]. The meaning of the NGD 
function was experimentally interpreted with the 
counterintuitive propagation of output signal raising 
and trailing edges in advance compared to its input 
[2]. This extraordinary effect does not contradict 

the causality principle. 
Then, the orthodoxly 
circuit theory with the 
revelation of basic NGD 
circuit topologies was 
introduced [3]. To fur-
ther understand the NGD 
function interpretation, 

a circuit theory emphasizing the similitude with the 
analog filter behavior was proposed [3]. Because of 
its counterintuitive effect, the unfamiliar NGD effect 
causes skepticism in the circuit engineering commu-
nities. Since the first experimentation, the NGD topic 
attracted the curiosity of a few electronic and RF/
microwave researchers. One of the remarkable peri-
ods was the early 2000s where the NGD function dis-
closure coincided with the RF and microwave met-
amaterial revolution [4]. Then, the left-hand-based 
NGD circuit was validated with different analytical 
approaches as the consideration of resistive loss [5]. 
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However, the metamaterial aspects based on NGD 
passive circuits suffer from excessively high attenua-
tion losses that may reach 20 dB [4] with only a single 
cell. The circuit loss problem was also found with the 
resonant resistor–inductor–capacitor (RLC)-network 
nonmetamaterial NGD circuits. In other words, the 
NGD values become insignificant if the attenuation 
loss is excessively high. This technical weakness of 
NGD functions raises curious questions about the 
general applications as proposed in [6], [7], and [8]. 
The tentative fields of application concern group 
delay (GD) equalization, bilateral gain compensated 
circuits, frequency-independent phase shifter, and 
nonfoster element design. To solve the problems 
caused by the insertion loss, more research work 
efforts have been made since the early 2010s on the 
design of RF and microwave NGD active circuits [9], 
[10], [11]. These existing lumped NGD active circuits 
are susceptible to compensate for the attenuation 
loss but their constituting lumped RLC networks can-
not work at a high frequency above gigahertz. Thus, 
the present research work focuses on the design of 
active and T-topology bandpass (BP) NGD function 
with the transmission line (TL) theory. The main nov-
elty and contribution of the article in difference from 
the existing NGD work [11] are

•	 Theorization of the distributed and active BP 
NGD topology using a coupled line (CL)-based 
T-cell passive topology. The overall BP NGD cir-
cuit under study is comprised of a distributed 
passive T-cell compensated by a microwave 
amplifier.

•	 Design method of the active circuit in terms of 
the available expected BP NGD specifications. 
Choice and integration of low noise amplifier 
(LNA) to target NGD specifications (NGD center 
frequency, NGD value, and NGD bandwidth) and 
loss compensation. 

Design, simulation, and experimental 
validations of the NGD T-topology

This section introduces the S-matrix modeling of 
the passive T-topology. The BP NGD analysis is per-
formed in function of the circuit parameters.

T-Topological description
Figure 1a shows the equivalent circuit of the T-topol-

ogy that acts as a two-port circuit built with fully dis-
tributed passive structures: Two identical CLs denoted 

CL1 and CL2 with identical characteristic impedance 
Z, attenuation a, propagation delay τ, and coupling 
coefficient k. In Figure 1a, CL1 and CL2 are references 
with ports, (①, ③, ④, ⑤) and (②, ③, ⑥, ⑦), respectively. 
An open-ended stub is represented by a TL having 
identical characteristic impedance Z, attenuation a, 
and propagation delay τ. As seen in Figure 1a, this TL 
is connected between port ⑤ and port ⑦. The global 
S-matrix model is determined based on the equivalent 
circuit. As introduced in Figure 1b, the TL is reduced as 
a parallel impedance Zin. According to the TL theory, 
by denoting the terminal load reference impedance,  
R0 = 50 Ω, s = jω the Laplace variable and the angular 
frequency variable ω, the TL input impedance is given 
by

    Z s R Z a s a sin( ) / exp( ) / exp( )= − −





+ −



0

2 2 21 2 1 2τ τ .� (1)

Magnitudes of the T-topology reflection and 
transmission coefficients

Similar to the classical microwave circuit analy-
ses, before the NGD analysis, it is crucial to perceive 
the frequency responses of the T-topology S-parame-
ter coefficients. Accordingly, the associated magni-
tudes of the transmission coefficients are
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where k is the coupling coefficient. We recall that 
the phase shift associated with the transmission 

Figure 1. (a) Configuration of the T-topology under 
study. (b) Open stub input impedance.
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coefficient is defined by ϕ ω ω( ) arg ( )= [ ]S j21 . 
According to the circuit and system theory, the GD 
can be derived from the transmission coefficient as 
follows:

	         GD( ) ( ) /ω ϕ ω ω= −∂ ∂ .� (4)

Knowing the transmission phase, the reverse T-topol-
ogy GD can be analytically calculated from this pre-
vious expression.

NGD analysis at very low frequency
One of the natural particular frequencies, which 

can be investigated for the NGD existence, is the lowest 
frequency value. The NGD can be analyzed from the 
GD in (4). At very low frequency, GD GD0 0= ≈( )ω , 
the reverse T-topology presents the following GD:

GD0

2 2
0

2
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2 2 2 2 2 2 2

2 1

2 1
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π ωa k Z a
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/ / ( )
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We emphasize that this GD can be negative if

   2 1 00
2 2 2 2 2 2 2R a k a k Z a k( ) ( )− − + + + > .� (6)

Therefore, the topology under study can behave 
as a low-pass NGD circuit but this type is out of the 
range of the present study.

NGD analysis at resonance frequency
The second particular frequency of the topology 

under study can be resonance ω = ω0. At this fre-
quency, the GD is transformed as

GD GD= =
+

− − + + −
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To realize a BP NGD function, the following con-
dition must be satisfied:

 Z Z R k a a k k a> = − − + −

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In addition, the reflection and transmission coeffi-
cients are expressed as
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These S-parameters are susceptible to satisfy the 
constraints ST

11 0
10 2010( ) /

ω <
− dB  and ST

21 0 0( )ω ≠ .
To more realistically verify the efficiency of the 

developed BP NGD theory, the proof-of-concept 
(POC) will be investigated in the following section.

Design description of BP NGD T-circuit 
prototype

By using the previous relations, the theoretical 
model of the T-structure can be compared with 
simulation and measurement. Doing this, as POCs, 
passive and active BP NGD circuits were designed, 
simulated, fabricated, and tested to verify the valid-
ity of the theory established in the following sec-
tion. The design process of the BP NGD CL-based 
T-circuit was similar to the classical electronic cir-
cuits (filters, phase shifters, couplers, power divid-
ers, and so on). All simulation results in this article 
are obtained from simulations with the microwave 
electronic circuit designer and simulator advanced 
design system (ADS) from Keysight Technologies. 
The measurements were performed with a vector 
network analyzer (VNA). Figure 2a and b intro-
duces the ADS design layout and photograph of the 
T-microstrip circuit.

This passive circuit was implemented in fully distrib-
uted microstrip technology without using lossy lumped 
circuits. The fabricated prototype that is displayed in 
Figure 2 has a physical size of 40 mm × 80 mm. The 
prototype was realized on the FR4 substrate with the 
characteristics in Table 1. Before the fabrication, the 
TL and CL were slightly optimized to reach better NGD 
performances. It should be emphasized that the effect 
of TL connecting the access ports is negligible because 
of the well-matching effect, and its GD is notably small 
compared to the targeted NGD value as indicated in 
Table 1. The TL and CL physical widths w correspond 
to characteristic impedance Z = 48 Ω. The TL and CL 
quarter wavelength (θ = 90°) is set at the NGD center 
frequency f0 = 1.35 GHz. The considered CLs have iden-
tical coupling coefficients k = −15 dB.

Figure 2. Fabricated NGD passive circuit prototype  
(a) layout and (b) photograph.
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Passive T-prototype modeled, simulated, and 
experimental results

To experimentally validate the NGD function with 
the investigated T-topology, the prototype in Figure 2 
was tested. Then, the results from the MATLAB pro-
gram, ADS simulations, and measurements will be 
compared and discussed. The NGD prototype was 
measured using a VNA provided by Rohde & Schwarz 
(ZNB 20, frequency band from 100 kHz to 20 GHz). 
The comparative results are obtained from 1.2 to 1.4 
GHz as depicted in Figure 3. As expected, this result 
proves the validity of the BP NGD function gener-
ated by the T-topology introduced in Figure 1. The 
NGD prototype has a bandwidth of approximately 
24 MHz. As plotted in Figure 3a, the NGD optimal 
value is approximately −14.3 ns in simulation versus 
−13 ns in measurement. The NGD center frequency 
is approximately 1.36 GHz. Table 2 summarizes the 
comparison of NGD performances from the model, 
simulation, and measurement. Slight differences in 
GD calculated from (7), simulations, and experimen-
tal results, notably at approximately the NGD center 
frequency, are observed. They are notably due to the 
dielectric substrate permittivity tolerance, the sub-
strate dispersion loss, the metallization skin effect, 
and the fabricated circuit imperfection in the con-
sidered working frequency. The relative permittivity 
and loss tangent of PCB may vary with frequency, 
temperature, and other factors. Therefore, there is a 
slight difference between the simulated and meas-
ured frequencies. Moreover, Figure 3b introduces 
that the designed NGD prototype ensures −9 dB 
transmission coefficients in simulation and measure-
ment at approximately the center frequency.

Additionally, as depicted in Figure 3c, the reflec-
tion coefficient is better than −17.7 dB within the 
NGD bandwidth.

BP NGD experimental analysis of 
active topology 

To compensate for the insertion loss of the pas-
sive NGD circuit introduced in Figure 1, we have 
fabricated another active circuit prototype using a 
microwave amplifier which is shown in Figure 4. In 
this case, the POCs are constituted by a passive T-cir-
cuit and a packaged LNA. The employed amplifier 
is a surface-mounted monolithic LNA referenced 
LEE-9+ from mini-circuits whose gain is 8.5 dB. 
The experimental validation of the BP NGD active 
circuit was also performed based on S-parameter 

measurements. The VNA from Rohde & Schwarz is 
defined by the specification ZNB 20 frequency band 
from 100 kHz to 20 GHz. During the test, the active 
circuit was biased with a V0 = 5 VDC power supply.

Discussion on NGD results of the active circuit test
The simulation and measurement results are 

compared in Figure 5. The simulation result was per-
formed from S-parameters in the ADS environment. 
During the simulation, the touchstone file of LEE-9+ 
provided by the manufacturer [12] was considered. 
The measured frequency responses are very well cor-
related with the simulations. Furthermore, the results 
confirm the BP NGD function without loss expected 
with the T-topology and a microwave amplifier. The 
amplifier does not affect the GD responses. 

As shown in Figure 5a and b, NGD performances 
from measurement and simulations present an excel-
lent consistency in terms of simulated NGD center 
frequency, value, and bandwidth. The relative inac-
curacies of the reflection coefficient between meas-
urements and simulations are 5% better than the 
expected values.

 
Table 1.NGD T-circuit parameters and specifications.
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Active NGD circuit specifications
In addition to the NGD analyses, the power added 

efficiency (PAE) and intercept products were also 
characterized. As discussed in the following para-
graphs, the developed NGD circuit presents an inter-
esting active performance.

a) PAE characterization of the active NGD circuit 
The following parameters are considered to per-

form the NGD circuit PAE analysis. We denote

•	 the power consumption, PDC(NGD);

•	 the root mean square (RMS) input power, 
Pin(NGD); and

•	 the RMS output power, Pout(NGD).

The characterization was based on the NGD circuit 
output with a 1 dB compression point denoted Pout-1 dB. 
The NGD circuit PAE was assessed from the relation

     PAE NGD
NGD NGD

NGD
out in

DC

( )
( ) ( )

( )
.=

−P P

P
� (11)

During the test, the bias voltages are set to 
VGG = 9 V. Figure 6 shows the results of the P1 dB 
and PAE characterization of the active NGD circuit. 
Figure 6a shows the output 1 dB compression point, 
and Pout-1 dB = 15.4 dBm is measured at 1.36 GHz. 
The variation is widely less than 0.5 dB from 1.2 to 
1.5 GHz. This 1-dB compression depends mainly on 
the used LNA. When the power consumption of the 
active NGD circuit is equal to 450 mW, as shown 
in Figure 6b, the NGD circuit PAE is approximately 
7.5%. This PAE is almost insensitive to the frequency 

Figure 3. (a) GD, (b) transmission, and (c) reflection 
coefficients of the fabricated T-circuit, as shown in Figure 2.

 Table 2. Calculated, simulated, and experimented NGD 
performances.
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from 1.2 to 1.5 GHz. This NGD circuit PAE can be 
improved by using less power-consuming NGD pas-
sive topology.

b) Input/output intercept products characteriza-
tion of the active NGD circuit

The nonlinearity characterization of the NGD cir-
cuit is based on the assessment of the output and 
input third-order intercept products (OIP3 and IIP3). 
Two different sine signals

	      
v t V f t

v t V f t
1 1 1

2 2 2

2

2

( ) sin( )

( ) sin( )
max

max

=

=







π

π

� (12)

with frequencies f1 and f2 were injected to realize this 
nonlinearity analysis. The two-input signal ampli-
tudes were maintained

	           V1max= V2max= Vmax.� (13)

We denoted the amplitude of input signal funda-
mentals as P1, and the output one P2 corresponds to 
the frequency

		  f f fout = −2 1 2. � (14)

The output third-order intercept was calculated by

	     OIP NGD3
2

1 2
1( ) .=

−
+

P P
P � (15)

By denoting the NGD circuit gain by G, we extract 
the input third-order intercept from the equation

	    IIP NGD OIP NGD3 3( ) ( )= −G.� (16)

The measurement test setup is shown in Figure 7a. 
The following equipment was used during the test.

•	 Two signal generators with reference: 1) Agilent 
MXG Analog Signal Generator N5183A operat-
ing in the bandwidth of 100 kHz–40 GHz and 2) 
Agilent N9310A RF Signal Generator with the fre-
quency band of 9 kHz–3 GHz to synthesize two-
tone harmonic signals with center frequencies: f1 = 
f0 and f2 = f0 + 1 MHz with f0 = 1.35 GHz. 

•	 The two-tone signals were combined using a power 
combiner, referenced, ZFRSC-42-S+, which oper-
ates from DC-4200 MHz provided by a mini-circuit.

•	 The signal spectra are visualized with the spectrum 
analyzer reference, Agilent MXE EMI Receiver 
N9038A, which operates from 20 Hz–26.5 GHz.

The measured OIP3 and IIP3 are displayed in Fig-
ure 7b. We can emphasize that OIP3 is 29 dBm, and 
IIP3 is 21 dBm.

Discussion on the performance of an active 
prototype NGD compared with the literature

Table 3 summarizes the comparison of NGD 
performance parameters: f0, GDn, BW, and S21(f0). 
Table 3 shows the performance results of the pro-
posed NGD active circuit compared to others in 
the literature [9], [10], [11], [13], [14], [15]. Subse-
quently, the introduced T-structure and LNA-based 
NGD topology have the main advantages in terms of:

•	 possibility to operate with a large NGD value; 
•	 low signal attenuation;

Figure 4. Photograph of the fabricated active NGD 
circuit.

Figure 5. (a) GD, (b) transmission, and (c) reflection 
coefficients of the fabricated NGD circuit in Figure 4.
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Figure 7. OIP3 and IIP3 characterization. (a) Experimental setup. (b) Measured results.

 
Table 3. NGD performance comparison.

Figure 6. Experimental (a) 1 dB power compression point and (b) PAE for the active  
NGD circuit.
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•	 design simplicity; and
•	 good return loss.

The main novelty of the present research work, 
in difference from the NGD design proposed in 
[11], concerns the nonlinear (NL) and noise fig-
ure (NF) characterization of a microwave active 
circuit implemented with a fully distributed 
microstrip passive NGD circuit part. Compared 
with other passive NGD circuits [13], [14], [15], 
the passive structure proposed in this work has the 
advantage of larger NGD value, good return loss, 
and design simplicity. Correspondingly, the band-
width of T-topology is relatively smaller than that 
of other passive structures.

The proposed circuit is promising to be useful 
but for many wireless communication channels as 
in standard IEEE 802.11b, satellite communication 
channels are limited to 20 MHz, and the proposed 
circuit bandwidth is good enough. 

A BP NGD theory of active microwave circuits 
including a passive T-topology is developed. The 
passive T-topology is composed of fully passive 
distributed elements with a TL and two identical 
CLs. The S-matrix models of both passive and 
active topologies are established. More impor-
tantly, the calculated, simulated, and measured 
results were compared. As POC, the tests and val-
idations were performed with an NGD circuit pro-
totype designed and implemented in microstrip 
technology. Excellent consistency was observed 
between simulations and measurements, which 
confirm the BP NGD behavior. The tested proto-
type has excellent performance compared with 
those in the literature. The measured GD value of 
−13 ns and a transmission coefficient better than 
0 dB were achieved at the center frequency of 
approximately 1.36 GHz.� 
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FPGA-Chain: Enabling 
Holistic Protection of 
FPGA Supply Chain With 
Blockchain Technology

 The global FPGA market size is valued at 
about $9 billion in 2020 and is projected to grow to 
$18.8 billion in 2027 due to the incoming Internet-of-
Things (IoT) era [1]. Thanks to their excellent flexi-
bility and performance, FPGAs are becoming one of 
the major IoT platforms to meet the evolving func-
tional, reliability, and security requirements through-
out many years of infield execution, supporting the 
mission-critical infrastructure in hospitals, airports, 
and military bases [2].

Despite the bright market prospect, the FPGA sup-
ply chain is gravely threatened from the trust perspec-
tive, that is, counterfeit FPGA hardware devices and 
software bitstream tampering. A counterfeit FPGA 

device can be a recycled 
chip reclaimed from the 
discarded boards, cloned 
copies, an item remarked 
to a higher specification 
or overproduced product 
from a rogue foundry [3]. 
The scenarios get even 
worsen due to the chip 
shortage induced by 
the COVID-19 pandemic 

which encourages the counterfeiters to flood the 
supply chain with illegitimate FPGA ICs for higher 
revenue. The inundation of counterfeit FPGAs would 
undermine the reliability and trustworthiness of mis-
sion-critical infrastructures, leading to disastrous 
results potentially. Moreover, the malleable con-
figuration bitstream (FPGA firmware encoding the 
user-defined circuitry) is susceptible to tampering by 
inserting malicious functionality such as information 
leakage and denial-of-service [4]. Given the serious 
security concerns from the counterfeit devices and 
tampered bitstream threats, a transparent, fair, and 
the trusted FPGA supply chain is in high demand 
to ensure the authenticity of purchased FPGA chips 
and associated firmware.

Although numerous techniques have been pro-
posed against counterfeit devices and bitstream tam-
pering in the past decade, a silver bullet solution is 
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still unavailable, unfortunately [5]. For example, to 
identify recycled and remarked FPGAs, people estab-
lish complicated standards and electrical tests which 
are costly and less effective against counterfeit ICs 
without observable defects or degradation [3]. Hard-
ware devices and FPGA bitstreams can be protected 
by logic locking [6] by adding extra key gates in the 
original netlist to be only unlocked with a correct 
key. However, SAT attacks [6] as well as advanced 
optical physical attacks [7] fundamentally challenge 
the scheme. The conventional original component 
manufacturer (OCM) query-based system verifies 
the devices by checking the chip ID from users [8]. 
If the corresponding static record can be found in 
the database, the item is recognized as an authentic 
device. However, the scheme does not provide any 
traceability or inform the ownership status of the tar-
get chip so that an intelligent adversary can easily 
inject counterfeit devices with legitimate IDs (e.g., 
recycled devices) to deceive the query mechanism. 
Considering these limitations, it is imperative to 
establish a framework to provide holistic protection 
by fulfilling the following requirements.

•	 Traceability empowerment. Lacking traceability 
presents formidable challenges to protecting the 
FPGA supply chain. Empowering traceability 
could tackle the root causes of illegitimate devices 
and bitstreams instead of endlessly proposing var-
ious offline techniques with limited scopes.

•	 Fair data management. The authentic information 
of FPGA devices and bitstreams should be stored 
in a secure database to serve as the foundation of 
traceability. The information should be managed 
fairly; single entities cannot stealthily manipulate or 
delete the records from the database.

•	 Effective authentication protocols. To enable 
trustworthy traceability in the convoluted supply 
chain, authentication protocols must be available 
to ensure 1) every hardware FPGA instance can 
be uniquely identified and authenticated and 2) 
the software bitstream integrity can be verified.

These requirements inspire us to propose our 
novel blockchain-based framework, FPGA chain, 
protecting the FPGA supply chain against the intru-
sions of problematic devices and bitstreams. Block-
chain, as a decentralized ledger system, can increase 
transparency and reduce cost and risks across the 
supply chain [5], thus becoming our infrastructure 

choice for FPGA supply chain management. We 
summarize our contributions below.

•	 We propose the FPGA-chain framework that can 
enroll the information of FPGA devices and bit-
streams and trace and track devices throughout 
the diverse supply chain, providing the prove-
nance at any arbitrary stage according to the 
ownership history, helping identify counterfeit 
devices.

•	 We store the data records in the synchronized 
ledger distributed on multiple peer nodes and 
manage them with customized smart contracts. 
Any operations on the ledger need a consen-
sus across organizations, enabling fair data 
management.

•	 We propose an authentication protocol covering 
both device authenticity and bitstream integrity 
verification utilizing the partial run-time reconfig-
uration capability available in modern FPGAs [9] 
to prevent illegitimate components from entering 
the user domain.

Background

FPGA supply chain and threat model
Figure 1a presents the FPGA supply chain and 

our threat model. A typical FPGA supply chain path 
starts with the presilicon design from the OCMs, that 
is, FPGA vendors like AMD-Xilinx and Intel. Their 
engineers hand the layout design to the (offshore) 
foundries for device fabrication and packaging. 
The product chips then enter the chip distribution 
network from where PCB assemblers can purchase 
these items. The FPGA boards mounted with periph-
eral modules such as power management units and 
external memories can be later distributed by PCB 
distributors. System developers purchase the board 
and program the target FPGA by installing the config-
uration bitstream. Such FPGA-based systems are dis-
tributed by system distributors and finally reach the 
end-users for various applications. As FPGAs would 
be integrated into mission-critical systems such as 
military infrastructure or medical equipment, end-us-
ers always want authentic devices and compliant bit-
streams to protect the final systems from reliability 
and/or security issues. OCMs also need a genuine 
supply chain to protect their revenue and reputa-
tions while the system developers expect their asset 
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bitstreams should not be tampered with and con-
form to the original specification. Therefore, in our 
threat model (see also Figure 1a), except for OCMs 
and end-users, other participants can be untrusted. 
The system developers are partially trusted since 
they might introduce counterfeit devices but have 
no motivation to compromise their own bitstreams. 
We articulate the targeted threats below.

•	 Recycled devices: Untrusted IC/PCB/system dis-
tributors, PCB assemblers, and system develop-
ers might intentionally introduce recycled FPGAs 
(e.g., reclaimed from discarded boards) as new 
ones for cost savings or higher profits.

•	 Overproduced devices: Rogue foundries have the 
access to the layout design and can fabricate 
more items than ordered. These illegitimate cop-
ies can be sold to untrusted entities in the supply 
chain through the gray market.

•	 Remarked devices: The marking information on 
the chip surface indicates the part name, speed 
grade, lot number, and so on. An untrusted entity 
can remark an FPGA to a higher grade to extend 
the profit margin.

•	 Cloned devices: A cloned device is a replica of 
the authentic device through hardware reverse 
engineering and refabrication. The untrusted 
entities could inject these illegitimate devices 
stealthily, whereas cloned items potentially have 
serious quality and reliability issues.

•	 Tampered bitstreams: The configuration bit-
streams determine the FPGA in-field behaviors. 
They can be manipulated by the untrusted sys-
tem distributors for inserting malicious function-
ality, compromising the confidentiality, integrity, 
and availability of the final systems.

Given the above-mentioned threats, we propose 
our blockchain-centric framework, FPGA chain, to 
address them by empowering device traceability 
and authenticity verification in the supply chain.

Existing supply chain protection schemes
Counterfeit detection techniques involve sophis-

ticated (even destructive) inspections such as 
electronic tests, optical, and T-Hz imaging, which 
are typically expensive and expertise-intensive [3]. 
Counterfeit avoidance primitives are a set of low-
cost primitives that can help measure chip status 
and/or fingerprint silicon [3]. Among them, physical 

unclonable function (PUF) primitives can trans-
late the silicon process variations to chip-unique 
signature, that is, challenge-response pairs (CRPs), 
as shown in Figure 1b. The CRPs are profiled and 

Figure 1. (a) FPGA supply chain and our 
threat model, (b) PUF application for 
counterfeit device detection, (c) consortium 
blockchain-based FPGA-chain framework, 
and (d) example entry for an FPGA object in 
the distributed blockchain ledger.
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stored by OCMs in a secure database during the PUF 
enrolment phase and can be invoked for detect-
ing counterfeit devices by checking the difference 
from the response of the same challenge at an arbi-
trary stage of the supply chain. Note that the used 
CRPs will expire and need to be deleted from the 
database. PUF primitives are, albeit effective, not 
available in most commercial FPGAs. As for FPGA 
bitstream protection, encryption and authentication 
are the most prevalent scheme where the adversary 
is supposed to access the ciphertext data only. How-
ever, some recent research has demonstrated how 
to exploit the vulnerabilities in several FPGA families 
to decrypt, manipulate, and re-encrypt the cipher-
text bitstreams without knowing the symmetric key 
[9]. Some OCMs offer the static ID-based verification 
mechanism which searches for the user-provided 
ID in their centralized database for authenticity 
validation. However, a counterfeit device such as 
a recycled or cloned chip can have a legitimate ID 
and bypass this test. Besides, this mechanism suffers 
from single-point failure and insider data manipula-
tion risks where an administrator can arbitrarily add/
change/delete data records stealthily. In contrast, 
blockchain emerged as a decentralized and trans-
parent infrastructure, becoming a perfect candidate 
for enabling trustworthy traceability throughout the 
supply chain.

Blockchain for electronic supply chain
Blockchain emerges as the promising platform 

for the supply chain scheduling by storing and man-
aging the data in a decentralized ledger. Unlike the 
traditional centralized database which is managed 
by a central administrative authority, blockchain 
relies on a certificate authority (CA) network which 
is a group of verified peer nodes that jointly approve 
new operations based on the underlying voting con-
sensus mechanism. The peer-to-peer topology of 
blockchain allows the ledger to be stored synchro-
nously on millions of servers. Blockchain infrastruc-
ture can be classified into three categories: 1) public; 
2) private; and 3) consortium. Public blockchain 
allows anyone to view and participate in the infra-
structure (e.g., Bitcoin) while private blockchain is 
confined to those nodes which are permissioned by 
the administrative entity, which works well inside 
a single organization with multiple departments. 
Considering the FPGA supply chain involves numer-
ous different companies/entities, the consortium 

style is a good fit since it is a permissioned platform 
governed by multiple organizations, combining 
the merits of both private (efficiency) and public 
(decentralization) variants.

Although blockchain has been used for schedul-
ing the general microelectronic supply chain in [5], 
[8], and [10], the FPGA supply chain is confronted 
with additional vulnerabilities from the software bit-
stream perspective. Besides, [5] and [10] assume 
there are available hardware PUF instances on the 
target silicon for authentication, which is not the 
case for most commercial FPGAs. Therefore, our 
FPGA-chain framework is tailored to suit the fact 
much better by using soft PUFs and run-time configu-
ration data verification which will be detailed in the 
upcoming section.

FPGA-chain framework

Overview
The overview of our proposed FPGA-chain frame-

work is depicted in Figure 1c. There are manage-
ment components of the platform.

•	 Consortium configuration manager: It defines the 
policies of the FPGA-chain platform. For exam-
ple, an asset object can only be created by OCMs 
and updated upon consensus.

•	 CA: It cryptographically ensures the confidential-
ity and integrity of each transaction and opera-
tion for peer nodes.

•	 Membership service provider: It assigns and man-
ages the identities of involved members.

•	 Transaction manager: It interacts with the smart 
contracts for receiving requests, schedules 
the consensus voting among peer nodes, and 
post-transactions to all synchronized ledgers. 
Note that, instead of using the computation-
ally intensive proof-of-work (PoW) protocol, 
we update the ledger through the peer-level 
verification of transaction correctness that can 
be implemented using the practical byzantine 
fault-tolerate (PBFT) algorithm and digital signa-
tures for better efficiency and throughput.

These management components control and 
manage the peer nodes which are deployed on the 
hosts of OCMs, PCB assemblers, system developers, 
and IC/PCB/system distributors. Each node will have 
a copy of the synchronized ledger containing iden-
tical records. Also, there are smart contracts that are 
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service programs to be invoked by users through 
distributed applications (DApps) on their terminals. 
The available smart contracts are the following.

•	 Check_ID: Only OCMs can invoke the contract to 
verify whether the incoming chip ID is presented 
in the processing wish list.

•	 Create_Asset: Only OCMs can invoke the contract 
to create a new data object for the target FPGA 
(asset) in the distributed ledger (see Figure 1d for 
an example entry).

•	 Update_Asset: This contract is executed to update 
the information such as properties or ownership 
status of an asset based on the consensus of peer 
nodes.

•	 Verify_Asset: This contract can be invoked by 
anyone in the supply chain to trace and track the 
provenance of the target FPGA to avoid counter-
feit scenarios.

•	 Authenticate_Asset: Only end-users can invoke 
the contract to receive a partial bitstream through 
DApp that can be loaded on their FPGAs and 
return the outcome packet to the FPGA chain for 
authenticating the hardware device and/or soft-
ware bitstream.

Device enrolment
After device fabrication, the FPGA ICs should be 

sent to a trusted (in-house) facility for device enrol-
ment to avoid potential errors and security risks 
(see Figure 2a). The facility will send the IC enrol-
ment request through DApp that is later approved 
by the OCM. Next, a unique electronic chip ID 
(ECID) should be sent to the OCM as the identifier. 
ECID, as a common scheme for IC identification, is 
programed into each die during the wafer test. For 
example, every Xilinx FPGA is assigned with a 57-bit 
read-only Device_DNA that is accessible through 
either the JTAG interface or the internal DNA_Port 
primitive.1 OCM will execute the contract Check_ID 
to see whether this ECID belongs to one of the chips 
to be enrolled. If yes, an FPGA bitstream encoding 
a PUF implementation will be transferred to the 
facility that can be downloaded to the target device 
for collecting CRPs. As detailed in the previous 
section, PUF is used to fingerprint every silicon by 
utilizing the process variations. However, given the 
unavailability of hardware PUFs in most modern 
1We will mostly use Xilinx terminology (such as Device_DNA) for simplicity but 
the components like embedded ECID and partial reconfiguration capabilities are 
universal across mainstream vendors.

FPGAs, we propose that OCMs could develop an 
FPGA soft PUF at RTL or gate-level [11] to imple-
ment the primitive on the configurable fabric with 
good metrics like uniqueness, stability, uniformity, 
and area overhead, as an alternative. The facility 
can use the soft PUF to generate the CRPs and send 
them back along with the part marking and ECID to 
OCMs. With the information, OCMs can execute the 
Create_Asset to initiate the ledger entry for a new 
FPGA object as illustrated in Figure 1d. The blue 
fields will be filled with ECID, part marking, and 
PUF CRPs, while the ownership history includes 
the current owner (OCM) and the exact timestamp. 
Note that the PUF CRPs serve as the root-of-trust for 
the device authentication, so the data privacy pol-
icy will keep them private, that is, only visible to 
the trusted OCMs, whereas ECID and part marking 
can be public for identification. These privacy poli-
cies enforce necessary access control to constitute 
fair data management in the FPGA chain, effec-
tively avoiding sensitive information leakage to  
untrusted entities.

Transactions between supply chain entities
Despite the convoluted FPGA supply chain, most 

of the transactions can be considered in a similar 
model from the FPGA-chain side, that is, the buyers 
join the FPGA chain, get the IDs from the member 
service provider, and place orders through the DApp. 
The transaction manager component will schedule 
these orders and distribute them to the correspond-
ing sellers. After receiving the items, the buyer will 
verify the devices based on the ECIDs. Successful 
verification will motivate the buyers to confirm the 
items and the ownership status of the item needs to 
be updated. This flow is fully compatible with the 
present trading routine, while the sensitive business 
statistics such as batch number and price can be 
visible to permissioned entities under proper access 
control policies. Here, we highlight a typical case 
that a system developer wants to purchase an FPGA 
board from a PCB assembler as shown in Figure 2b. 
The FPGA device on the board is acquired from an 
IC distributor and enrolled by the OCM. The system 
developer sends the board purchase request via 
DApp and receives the boards shipped from the PCB 
assembler. The ECIDs can be read from the received 
FPGAs as the input to the smart contract Verify_Asset 
that will check whether the current owner of the ECID 
is consistent with the identity of the PCB assembler, 
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and then verify the previous owners according to 
the history iteratively until the OCM. In this way, the 
system developer can track the journey of the FPGA 
devices throughout the supply chain with the FPGA 
chain. If the verification passed, that is, successfully 
identifying the OCM, all involved entities can reach 
the consensus to update the current owner from the 
PCB assembler to the system developer (ownership 
history column in Figure 1d). Otherwise, the transac-
tion will be rejected and items would be returned.

Bitstream registration
System developers compile their hardware 

designs to generate configuration bitstreams, making 
the FPGAs become functional systems. As bitstream 
encodes the functionality of FPGA implementations, 
it is critical to protect them from malicious manip-
ulations to avoid aftermaths like denial-of-service 
and information leakage [2]. The bitstream registra-
tion (see Figure 2c) procedure records the plaintext 
bitstream on the FPGA chain that can be used as a 
reference for future verification. The system devel-
oper will send the registration request to the trusted 
OCM first. After the request approval, OCM will run 
the CheckJD contract to see whether the ECID from 
the system developer exists in the ledger or not. 

If yes, OCM will execute Update_Asset to bind the 
bitstream with the asset (FPGA) object, that is, the 
purple field in Figure 1d will be linked to the config-
uration data. Note that the plaintext bitstream is also 
stored in a private way to avoid being reverse engi-
neered by untrusted entities [2]. One may claim that 
system developers can upload their bitstreams to a 
conventional OCM-centralized database waiving the 
needs of a blockchain infrastructure, which might 
be more manageable but violate the data privacy 
policies since OCMs are considered to be trusted 
only for their hardware devices instead of the soft 
intellectual property (IP) encoded in the plaintext 
bitstream belonging to system developers.

Entering the user domain
When entering the user domain, FPGAs can be 

sold either without bitstream (bare chips and FPGA 
boards) or with bitstream (FPGA-based systems). 
End-users always care about the device’s authentic-
ity and bitstream integrity, whereas they are assumed 
to be unqualified to perform sophisticated inspec-
tions. They can rely on the FPGA-chain platform 
for authentication instead as presented in Figure 2d 
where an end-user purchases an FPGA-based system 
from a system distributor. The FPGA device might be 

Figure 2. (a) Device enrolment. (b) Transactions between supply chain entities. (c) Bitstream 
registration. (d) Entering the user domain. (e) Authentication bitstream diagram.
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counterfeit while the alongside bitstream could be 
tampered with by a system distributor. The first steps 
are identical to the transactions between supply 
chain entities but a successful ECID-based verifica-
tion does not necessarily indicate an authentic part 
and a compliant bitstream. Therefore, the end-user 
will send the authentication request via DApp and 
receive a partial bitstream to be downloaded in the 
FPGA. The partial bitstream will package the essen-
tial in-field information as a response packet to be 
sent back to the FPGA chain for verification.

As illustrated in Figure 2e, the authentication 
partial bitstream hardcodes a ciphertext ENCKa (Kh) 
and a finite-state machine (FSM)-obfuscated key Kb 
[12], where Ka and Kb are a pair of asymmetric keys 
while Kh is the HMAC key. On the FPGA side, the par-
tial reconfiguration engine in the static region will 
load the partial bitstream on the Dynamic Region 
through the internal configuration access port (ICAP) 
interface which can access and/or write the FPGA 
on-chip configuration memory at run-time. Then, the 
authentication bitstream will access the read from the 
DNA_Port, collect PUF responses (Ri), and retrieve 
the configuration frames of the functional region 
through the ICAP FSM. Kb is unrolled and decrypts Kh 
from ENCKa (Kh) in parallel. The final response packet 
will cover the ECID, PUF response, HMACkh (config-
uration data of the functional region), and HMAC 
over the three segments using Kh as well as the part 
marking (end-user input). The response packet will 
be checked against the reference information by the 
FPGA chain by following the protocol Authenticate_
Asset. This protocol can enable secure authentication 
even considering the man-in-the-middle attack since 
Kh can only be decrypted by the obfuscated Kb, that is, 
only time-consuming full bitstream reverse engineer-
ing can extract it (state-of-the-art techniques require 
>10 minutes [2]). An authentication session is only 
valid within the time threshold (e.g., 3 minutes) and 
rejects late packets to ensure security. If Authenticate_
Asset passed, the involved entities would achieve the 
consensus transferring the ownership from the system 
distributor to the end-user. Note that, for those without 
bitstream scenarios (e.g., bare chip or FPGA develop-
ment boards), the authentication procedure is similar 
but without the need for checking the bitstream integ-
rity (e.g., ICAP FSM is not required in the authentica-
tion bitstream in Figure 2e).

With the existing identification and intrinsic 
information, the FPGA chain can model the FPGA 

devices and bitstreams in the blockchain infrastruc-
ture to trust-worthily track and authenticate them 
thwarting targeted supply chain attacks in the previ-
ous subsection, whereas conventional solutions like 
ECID query and PUF cannot achieve the identical 
effectiveness individually as discussed in the previ-
ous section.

Evaluation and discussions

Security evaluation
As discussed in the previous section, there are 

five attack scenarios to be addressed by the FPGA 
chain. We illustrate the example scenarios against 
the attacks using the FPGA chain in Figure 3 and 
elaborate on them below.

•	 Recycled devices: Malicious distributors can 
import recycled devices from electronic recy-
clers (e.g., from offshore) and sell them as new 
ones to downstream entities such as PCB assem-
blers for more profits. Using recycled devices 
will undermine the reliability and security of the 
system significantly. The PCB assemblers as buy-
ers (see Figure 3a) can resort to the FPGA-chain 
infrastructure to verify the device authenticity 
of such recycled chips by checking the current 
owner/stage of the device ECID; the FPGA chain 
might report Verify_Assets failure because the 
device already arrives at a very end phase (e.g., 
customers or recyclers) according to the ledger 
records while it has come back to life again (e.g., 
IC distribution).

•	 Overproduced devices: As illustrated in Figure 
3b, a rogue foundry can fabricate more FPGA 
devices beyond the contract and rely on mali-
cious distributors to sell them as legitimate parts. 
There are two possible circumstances, that is, an 
overproduced FPGA with an illegitimate or legit-
imate ECID. The former is easy to be detected by 
the FPGA chain since the device ECID is never 
enrolled and cannot be found in the ledger. The 
latter case can be detected according to the own-
ership history and database since the current 
owner of its legitimate counterpart can be some-
one else instead of the seller (e.g., malicious dis-
tributor) in this transaction.

•	 Remarked devices: Figure 3c depicts an example 
case of remarked devices where the malicious 
distributors modify the top marking of an FPGA 
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to a higher grade for a 10× or even 100× more 
profit space. With the FPGA chain, the marking 
information is also bonded with the ECID (asset 
object) in the ledger. Once an inconsistency 
between the marking from buyers and the ref-
erence marking belonging to the same FPGA is 
found, a remarked device is detected.

	° Cloned devices: A system developer, albeit 
being trusted in terms of FPGA bitstream, 
might intend to create cloned devices for a 
reduced cost. Cloned devices are replicas of 
authentic ones and thus have the same ECIDs 
(see Figure 3d). Detecting a cloned device is 
similar to dealing with the overproduced chip 
with a legitimate ID. One additional case is 
when the cloned device flows faster than its 
authentic counterpart (e.g., the counterfeits 
enter the distribution network at first), the 
ECID-based identification would wrongly con-
sider the replica as the authentic part. Never-
theless, before reaching the user domain, the 
authentication procedure as articulated in 
the previous section would provision a soft 
PUF primitive on the target FPGA collecting 
the in-field PUF responses which depend on 
the device’s intrinsic process variations. In 

this way, the cloned copies can be differen-
tiated if the in-field responses deviate much 
from their reference counterparts stored in 
the FPGA chain.

•	 Tampered bitstream: The configuration data 
might be tampered with by malicious distrib-
utors after bitstream integration for incorpo-
rating malicious circuitry (see Figure 3e). The 
FPGA chain can detect the bitstream corrup-
tions through the authentication protocol that 
the FPGA configuration data of the functional 
regions will be accessed during the run-time to 
calculate the in-field HMAC accordingly. The 
mismatch between the in-field HMAC and the 
pre-computed value using the registered plain-
text bitstream from the FPGA chain indicates a 
tampered bitstream. The HMAC key is random 
per session and well protected through hard-
ware obfuscation and asymmetric cryptogra-
phy, so the attacker cannot replay or modify the 
response packet arbitrarily.

Implementation and overhead evaluation
The FPGA chain has been implemented by the 

blockchain infrastructure, as detailed in [8]. The 
prototype infrastructure is Hyperledger fabric-like, 

Figure 3. FPGA chain thwarts typical supply chain attacks. (a) Recycled devices detection 
example. (b) Overproduced devices detection example. (c) Remarked devices detection example. 
(d) Cloned devices detection example. (e) Tampered bitstream detection example.
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consisting of seven peer nodes (each has an Intel 
Xeon processor and 32 GB RAM) standing for organ-
izations such as OCM and IC distributors. The smart 
contracts are packaged on every individual node, 
while the DApp is developed with Node.js, while 
the computational performance is evaluated that we 
can register 1,000 devices in 20 min at a speed of 
40 transactions per minute. Another important anal-
ysis is to evaluate the time and area overhead of the 
authentication protocol where the partial bitstream 
design (the dynamic region in Figure 2e) should be 
compact and efficient. The following statistics are 
reported on a mid-end FPGA platform Xilinx ZCU104. 
A soft 1,024-bit RSA design was used to enable asym-
metric cryptographic operations (652 slices). The 
ECID reader was essentially a shifter register con-
necting to the DNA_PORT primitive to access the 
ECID (28 slices). Besides, we selected an area-effi-
cient and stable 16-bit RO PUF scheme for enrolment 
and authentication purposes (213 slices). The largest 
module was the soft HMAC along with the ICAP FSM 
occupying 1,985 slices in total. The overall resource 
utilization is around 3.21% of the entire FPGA fab-
ric. Given the variety of FPGA fabric, we evaluate the 
area overhead on Xilinx VC709 and Synopsys HAPS 
DX7 platforms as well which are roughly 2.74% and 
2.09%, respectively, in terms of slices. As for the time 
overhead covering the network transmission of the 
partial bitstream and the response packet as well as 
the statistics generation (e.g., HMAC calculation), 
the entire procedure was around 1.13 s (the main 
clock was assumed to be 100 MHz). Therefore, the 
FPGA implementation for in-field authentication is 
ideal for verifying the authenticity of the FPGA-based 
system because of the small overhead.

The security threats in the convoluted FPGA 
supply chain are longstanding concerns that have 
not yet been addressed holistically. We propose 
our FPGA-chain framework to deploy a consortium 
blockchain infrastructure featuring fair data manage-
ment, flexible smart contracts, and secure authenti-
cation protocols to provide substantial protection 
to the entire FPGA supply chain against counterfeit 
devices including recycling, cloning, overproduc-
tion, and remarking as well as bitstream tampering 
threats. The comprehensive evaluation demon-
strates the effectiveness and acceptable overhead of 
our FPGA chain. We will further enhance the FPGA 
chain’s framework by introducing active IP metering 
and compatibility with emerging devices.� 
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 Jointly sponsored by ACM and IEEE, the 
International Conference on Computer-Aided 
Design (ICCAD) is a premier forum to explore new 
challenges, present leading-edge innovative solu-
tions, and identify emerging technologies in the 
electronic design automation (EDA) research areas. 
ICCAD covers the full range of computer-aided 
design (CAD) topics—from the device and circuit 
levels up through the system level, as well as post-
CMOS design.

After two years of virtual conferences due to the 
global COVID-19 pandemic, we were excited to 
organize the 41st edition of ICCAD as a hybrid con-
ference from 30 October to 4 November 2022, in 
San Diego, CA, USA. The conference was primarily 
an in-person event enabling personal interactions 
and extensive networking, aspects that cannot be 
replicated in virtual platforms. At the same time, 
we offered virtual sessions for the speakers and the 
attendees who cannot attend in person due to travel 
restrictions or health issues. The virtual sessions were 
held fully online in the morning followed by the 
in-person sessions. Approximately 40 sessions were 
held in person, while 15 sessions were virtual. Prere-
corded video presentations of all the talks, irrespec-
tive of whether they are part of a virtual or in-person 
session, were available on the virtual platform for 

all the attendees. The participants could discuss the 
papers with the authors through the virtual platform. 
The conference was immensely successful with a 
record 533 registered participants including 336 ons-
ite attendees.

ICCAD has a long-standing tradition of produc-
ing cutting-edge, innovative technical programs for 
attendees. Following the tradition, the members of 
the executive committee, the technical program 
committee, and numerous volunteers spent an enor-
mous effort to prepare an outstanding technical pro-
gram for this year as well. We are glad to announce 
that we again had a significant increase in the num-
ber of regular paper submissions with a record 595 
papers going through the complete peer-review 
process. This strong submission record amidst a 
global pandemic emphasizes the high relevance 
and recognition of the conference within, but not 
limited to, the CAD community. For handling such 
an enormous submission number, we carefully cre-
ated 15 tracks and invited 203 outstanding technical 
program committee members from both industry 
and academia worldwide for these tracks. The TPC 
meeting was conducted as an online event with-
out compromising the quality of the double-blind 
review process. Finally, the program committee has 
selected 132 papers with an acceptance rate of 22% 
and yielded 43 regular sessions on diverse topics. 
In addition, we had ten special sessions and two 
embedded tutorials on topics that complement the 
regular sessions.

Conference ReportConference Report
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We were delighted to present three distinguished 
keynote speakers: the Monday morning keynote on 
Democratizing IC Design and Customized Comput-
ing was given by Prof. Jason Cong from the University 
of California, Los Angeles. On Tuesday, Prof. Farinaz 
Koushanfar from the University of California, San 
Diego, presented the IEEE CEDA Luncheon Distin-
guished Lecture on Automated Cryptographically-Se-
cure Private Computing. Shankar Krishnamoorthy 
from Synopsys presented the Wednesday keynote 
on Atoms to Silicon to Systems Hyper-Convergence 
to realize the next wave of semiconductor innova-
tions. Finally, Prof. Rob Rutenbar presented the ACM 
SIGDA Pioneering Achievement Award speech on 
Tuesday. As expected, these keynotes and speeches 
were inspiring, insightful, and informative.

We had six interesting workshops on Thursday 
and one on Friday covering various new and estab-
lished topics.

Some of these workshops [Workshop on Accel-
erator Computer-Aided Design (ACCAD), Workshop 
on Hardware and Algorithms for Learning On-a-Chip 
(HALO), Workshop on Open-Source EDA Tech-
nology (WOSET), and Top Picks in Hardware and 
Embedded Security] are long-time staples of ICCAD, 
while the Workshop on Zero Trust Hardware Archi-
tectures tests the waters for the first time. Two of 
these workshops are colocated with ICCAD: 24th 
ACM/IEEE International Workshop on System-Level 
Interconnect Pathfinding (SLIP) and Sustainable 
Hardware Security (SUSHI). The latter in a new inter-
active workshop that brought together around 50 
invited experts from academia, industry, and govern-
ment to explore sustainable security for computing 
platforms.

Last but not the least, ICCAD hosted several con-
tests and competitions. The CAD Contest is a mul-
timonth, team-based research and development 
competition, focusing on advanced, real-world 
problems in the field of EDA. The CADathlon is an 
all-day programming competition focusing on prac-
tical problems at the forefront of CAD and EDA. The 
ACM Student Research Competition (SRC) at ICCAD 
provides an opportunity for undergraduate and grad-
uate students to share research results and exchange 

ideas with other students, judges, and conference 
attendees. This year, we also debuted the ACM/IEEE 
TinyML Design Contest—a team-based, multimonth, 
research and development competition, focusing 
on real-world problems that require the implemen-
tation of machine-learning algorithms on low-end 
microprocessors/microcontrollers. Finally, ICCAD 
2022 also featured the first-ever Job Fair where stu-
dents and professionals met with representatives 
from approximately ten industry and research 
organizations.

ICCAD aims relentlessly at being the ultimate des-
tination for cutting-edge EDA research and emerg-
ing CAD technologies. The organization of ICCAD 
is only possible with continuous support and help 
from the sponsors and many volunteers: the program 
chair with the program committee members, the 
organizers of the workshops, contests, and job fairs, 
and all members of the organization committee. We 
are grateful for their commitment and dedicated 
contributions as well as the attendance, interaction, 
and support of the community in shaping this year’s 
hybrid event into a memorable one.

The next ICCAD will take place in San Francisco, 
CA, USA, between 29 October and 2 November 
2023. Please follow iccad.com for more details and 
updates.� 
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g Back when I first got into the electronic test, 
over 40 years ago, things were simple. You applied 
a test to a chip, usually a functional test, and you 
got a result. The expected value, obtained during 
simulation, was a series of vectors, ones, and zeroes, 
which was simple to compare with the circuit out-
put. If your simulation and test program were good, 
the outputs would match except when the circuit 
was faulty.

We soon moved to structural testing, where you 
mostly cared about the outputs of the scan chains. A 
bit trickier, but still not a big problem.

Now, based on several articles in this issue of 
IEEE Design&Test, things are more complicated. 
Defects do not necessarily cause a system to pro-
duce incorrect results. A structural test of AI hard-
ware is not a problem, but I am not sure how to do 
a functional test.

For most of the world, testing has nothing to do 
with digital circuits. Reading this issue made me 
think of the more normal kind of testing. Let us con-
sider the tests we took (or gave) in college.

In a way, a multiple-choice or short-answer test 
can be considered a structural test. Each question 
tests for a specific item of knowledge. If a student 
memorized the right set of facts, they might do very 
well on these tests, even if they did not understand 
the subject at all. An essay question is more of a 
functional test. Properly written, it can test if a stu-
dent understands how the parts of a topic area fit 
together. Now, often when we grade an essay test, 
we will have a list of things we expect the student 
to cover. That makes the functional essay test a bit 
more like the structural short-answer test. Structural 
tests are easier to grade, just like electronic testing. 

Grading of multiple-choice tests like the SAT is auto-
mated, but grading of essay tests is not. Yet.

Which brings us back to AI. As I write, the news 
is full of panic about students using ChatGPT to do 
their homework, specifically to write essays. I asked 
it to write this column, but it said “Sorry, Davidson, 
I can’t do that,” so be assured that this column is 
being written the old-fashioned way—on a com-
puter. But it appears that this tool does as good or 
better a job as many students. I am not sure what to 
think about that.

If students are using AI to write essays, it seems 
only fair to allow professors to use AI to grade essays. 
I wonder if ChatGPT can do that. I wonder if anyone 
has tried it.

This reminds me of a running gag in the excellent 
movie Real Genius, which is set at a university that 
resembles CalTech. A large lecture class is being 
taught by a boring professor. A student brings a tape 
recorder, puts it on their seat, and leaves. As the 
movie progresses, more and more seats are occu-
pied by tape recorders, until the professor tapes his 
lecture and we see a tape recorder lecturing in a 
room filled with other tape recorders. Maybe some-
day AIs will both take and grade tests, and students 
and teachers can sit outside on the lawn and learn 
that way. After all, I doubt Plato gave Aristotle multi-
ple-choice tests.� <

Is There an Answer?
Scott Davidson

 Direct questions and comments about this 
department to Scott Davidson; davidson.scott687@
gmail.com.
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